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Abstract: In order to find alternative pesticides, a series of benzamide derivatives was synthesized.
An in silico inverted virtual screening protocol considering the 13 common insecticide protein targets
was used to evaluate the potential insecticide activity of these molecules and identify the most
likely targets. The results suggest important clues for the development of this class of derivatives as
alternative insecticides.
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1. Introduction

Insect resistance to pesticides, resulting from factors like the frequency of resistance
alleles, pest management practices and cross-resistance, provoke loss to agriculture and
consequences for public health [1–3]. The development of alternative pesticides could help
to circumvent this significant limitation.

Carboxamide compounds have shown insecticidal effects against insect pests such as
Spodoptera litura or mosquitoes Aedes aegypti; the pyrazole carboxamide chlorantranilip-
role and the benzamide broflanilide have been placed on the market by agrochemical
companies [4–6].

In silico structural-based inverted virtual screening, sometimes mentioned simply as
inverted virtual screening or inverse virtual screening, is an appealing methodology to
estimate potential protein targets of molecules of pharmacological or biological interest [7,8].
In this methodology, protein–ligand docking is used to predict the binding pose and
estimate the binding affinity of a particular molecule of interest towards a database of
proteins or enzymes of a known tridimensional structure, known to be associated with a
specific condition or biological effect. Through this methodology, it is possible to identify
probable protein targets by screening a protein database with the query ligands, ending up
with a subset of the most probable targets for the specific ligands in study.

Considering the above-mentioned facts, and in continuation of our recent interests in
pesticides [9–11], in the present work, a series of benzamide derivatives was synthesized
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in order to predict their potential as insecticides. An in silico inverted virtual screening
protocol considering the 13 common insecticide protein targets was used to evaluate the
potential insecticide activity of these molecules and identify the most likely targets.

2. Materials and Methods
2.1. General Procedure for Synthesizing Compounds 4a,b and 5 (Illustrated for 5)

2-Chlorobenzoic acid 1b (0.372 g, 2.74 mmol) was added to 3-amino-9-ethylcarbazole
3 (0.500 g, 2.74 mmol) and triethylamine (0.995 mL, 7.13 mmol) in dichloromethane. Then,
thionyl chloride (0.345 mL, 4.76 mmol) was added at room temperature. The mixture was
stirred for 5 days at room temperature and monitored by TLC (silica: dichloromethane).
The recovery of the reaction product was performed by evaporating the solvent under
reduced pressure. The resulting residue was taken up in dichloromethane and washed
first with 1 M hydrogen chloride (40 mL) and then with 1 M sodium hydroxide (40 mL).
The organic phase was dried with magnesium sulfate and evaporated to dryness to afford
2-chloro-N-(9-ethyl-9H-carbazol-3-yl) benzamide 5 as a green solid (0.264 g, 0.856 mmol,
36%), m.p. = 162–164 ◦C, Rf = 0.65 (silica: dichloromethane). 1H NMR (400 MHz, CDCl3)
δH 1.44 (3H, t, J = 7.2 Hz, CH3), 4.38 (2H, q, J = 7.2 Hz, CH2), 7.24 (1H, dt, J = 8.0 and 1.2 Hz,
H-Ar), 7.39–7.43 (4H, m, Ph-Cl), 7.47–7.51 (2H, m, Ar-H), 7.64 (1H, dd, J = 8.8 and 2.0 Hz,
H-Ar), 7.84 (1H, dd, J = 6.8 and 2.4 Hz, Ar-H), 8.06 (1H, s, NH), 8.12 (1H, d, J = 8.0 Hz,
Ar-H), 8.47 (1H, d, J = 2.0 Hz, Ar-H) ppm. 13C NMR (100.6 MHz, CDCl3) δC 13.79 (CH3),
37.63 (CH2), 108.57 (2 × C-PhCl), 113.07 (Ar-C), 118.84 (Ar-C), 119.50 (Ar-C), 120.77 (Ar-C),
122.77 (C-4b), 123.13 (C-4a), 125.95 (Ar-C), 127.29 (Ar-C), 129.31 (PhCl), 130.36 (Ar-C), 130.44
(PhCl), 130.69 (PhCl), 131.52 (PhCl), 135.50 (Ar-C), 137.52 (C-9a), 140.48 (C-8a) and 164.68
(C=O) ppm were used.

2.2. Docking and Inverted Virtual Screening Studies

To obtain a representative pool of targets, papers describing virtual screening (VS)
studies involving targets and molecules with insecticidal activity were examined through
Scopus. The selection criteria were the relevance of the target and year of publication. In
the 18 studies found, 13 targets were identified and are listed in Table 1.

Table 1. List of targets selected for the Inverted Virtual Screening studies.

Organism PDB Target Resolution (Å) Ref.

Acetylcholinesterase Aedes aegypti 1QON 2.72
[12]4EY6 2.40

Drosophila melanogaster 1DX4 2.70 [13]

Alpha-esterase-7 (αE7) Lucilia cuprina 5TYJ 1.75
[14]5TYP 1.88

beta-N-Acetyl-D-hexosaminidase
OfHex1

Ostrinia furnacalis 3NSN 2.10 [15]
3OZP 2.00 [16]

Chitinase Ostrinia furnacalis 3WL1 1.77
[17]3WQV 2.04

Ecdysone receptor Heliothis virescens
1R20 3 [18]
1R1K 2.9 [19]

N-Acetylglucosamine-1-phosphate
uridyltransferase (GlmU)

Xanthomonas oryzae 2V0K 2.3
[20]2VD4 1.9

Octopamine receptor Blattella germanica 4N7C 1.75 [21]

Odorant Binding Protein

Aedes aegypti 5V13 1.84 [12]
Drosophila melanogaster 2GTE 1.4 [22]

Anopheles gambiae 3N7H 1.6
[23]Aedes aegypti 3K1E 1.85
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Table 1. Cont.

Organism PDB Target Resolution (Å) Ref.

Peptide deformylase Xanthomonas oryzae 5CY8 2.38 [24]

p-Hydroxyphenylpyruvate
dioxygenase Arabidopsis thaliana 6ISD 2.4 [25]

Polyphenol oxidase Manduca sexta 3HSS 2.7 [26]

Sterol carrier protein-2 (HaSCP-2) Helicoverpa armigera 4UEI Solution NMR [27]

Voltage-gated sodium channel Periplaneta americana 6A95 2.6 [28]

Each PDB structure was prepared for docking using the Autodock Vina plugin for
Pymol [29]. Crystallographic waters were removed. The ligands were extracted and
saved in separate files to be used for the re-docking and as a reference site for the docking
coordinates. When there were no crystallographic ligands present, a selection based on the
most important active site residues was made. Re-docking was used to evaluate the ability
of the docking software to reproduce the geometry and orientation of the crystallographic
pose as well as the quality of the docking protocol and to optimize the docking protocol.

The docking programs/scoring functions used were GOLD [30] (PLP, ASP, ChemScore,
GoldScore) and AutoDock Vina [31]. As a measure of protocol quality, redocking was
performed. This step is important in the protocol validation stage because it evaluates
the predicted docking pose by comparing it to the crystallographic one through an RMSD
calculation. The lower the RMSD is, the better the docking prediction.

The optimized parameters for each program/scoring function included the center of
the docking region, the docking box dimension or radius, exhaustiveness, search efficiency
and the number of runs. The final optimized conditions were used for the subsequent
stages. The three benzamide derivatives were prepared for docking using Datawarrior [32]
and OpenBabel [33] and were docked into each structure with the optimized protocol
across the five SF. A ranked list was prepared based on the average scores of each target.

2.3. Molecular Dynamics Simulations and Free Energy Calculations

The 100-ns molecular dynamics simulations were performed using the Amber18
software [34] for the three benzamide derivatives (compounds 4a, 4b and 5) bound to the
two most promising targets identified from the inverted virtual screening study (odorant
binding protein 1: 3KIE and acetylcholinesterase: 1QON).

The complexes for the MD simulations were prepared, starting from the pose pre-
dicted in the inverted virtual screening experiments with GOLD/PLP SF. The molecular
mechanics parameters were assigned using ANTECHAMBER, with RESP HF/6-31G(d)
charges calculated with Gaussian16 [35] and the General Amber Force Field (GAFF) [36].
The protein targets were described with the ff14SB force field [37]. The protein–ligand com-
plexes were placed in with TIP3P water boxes with a minimum distance of 12 Å between the
protein-surface and the side of the box. The overall charge on the system was neutralized
through the addition of counter-ions (Na+) and the periodic boundary conditions were
used. Long-range electrostatic interactions were calculated using the particle-mesh Ewald
summation method. For short-range electrostatic and Lennard–Jones interactions, a cut-off
value of 10.0 Å was used. All bonds involving hydrogen atoms were constrained using the
SHAKE algorithm, allowing the application of a 2-fs time step.

In order to remove the clashes, the systems were submitted to four consecutive mini-
mizations stages, followed by an equilibration and production. Each minimization had a
maximin of 2500 cycles. After the complete minimization, the systems were equilibrated
by a procedure, which was divided into two stages: in the first stage, NVT ensemble, the
systems were gradually heated to 298 K using a Langevin thermostat at constant volume
(50 ps); in the second stage, the density of the systems was further equilibrated at 298 K
(subsequent 50 ps). Finally, the production runs were performed during 100 ns. Production
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was executed with an NPT ensemble at constant temperature (298 K, Langevin thermostat)
and pressure (1 bar, Berendsen barostat), with periodic boundary conditions. An integra-
tion time of 2.0 fs using the SHAKE algorithm was used to constrain all covalent bonds
involving hydrogen atoms. The last 70 ns of the simulation were considered for SASA and
hydrogen bonding analysis. This overall procedure has been previously used with success
in the treatment of several biomolecular systems [28–35].

The molecular Mechanics/Generalized Born Surface Area method [38] was applied
using The MM/PBSA.py [39] script from amber. The last 70 ns of each simulation was
analyzed, with an interval of 100 ps and considering a salt concentration of 0.100 mol dm-3.
In addition, the energy decomposition method was employed to estimate the contribution
of all the amino acid residues for each of these binding free energies. From each MD
trajectory, a total of 1400 conformations taken from the last 70 ns of simulation were
considered for the MM-GBSA calculations.

3. Results and Discussion
3.1. Synthesis of Benzamides 4a,b and 5

As an attempt to find (semi)synthetic alternative insecticides with high and selective
activity to insects but that are nontoxic for human cells and environmentally safe, carboxylic
amides 4a, 4b and 5 were prepared (Scheme 1). The reaction of 4-chlorobenzoic acid 1a
or 2-chlorobenzoic acid 1b and 3-bromoaniline 2, by a known procedure with thionyl
chloride and trimethylamine, under room temperature [40], gave N-(3-bromophenyl)-4-
chlorobenzamide 4a and N-(3-bromophenyl)-2-chlorobenzamide 4b. Starting again from
2-chlorobenzoic acid 1b and using 9-ethyl-9H-carbazol-3-amine 3, following the same pro-
cedure, 2-chloro-N-(9-ethyl-9H-carbazol-3-yl)benzamide 5 was obtained. All benzamides
were isolated in moderate yields, and their structures were confirmed by the usual analyti-
cal techniques. The 1H NMR of compounds 4a,b and 5 showed the aromatic protons due to
the carboxylic acid units in addition to the amines protons (δ 7.85–8.51 ppm), highlighting
the H-3 and H-5 protons of 4-Cl-Ph as double triplets (δ 7.44–7.48 ppm, 4a) and of 2-Cl-Ph
as multiplets (δ 7.22–7.47 ppm, 4b, 5), in addition to the H-2 and H-5 protons of 3-Br-Ph as
triplets (δ 7.14–7.90 ppm, 4a,b) and of the carbazol nucleus as doublets, double doublets or
double triplets (7.22–8.47 ppm, 5). In the 13C NMR, the carbon signal of the amide linkage
stands out (δ at about 164.5 ppm).
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3.2. Inverted Virtual Screening Results

Table 2 presents the average scores obtained for all of the benzamide derivatives for
each potential target with each scoring function. The structure with the best score of each
set of targets was selected and then ranked from the best target to worst, according to the
predictions of the different docking programs/scoring functions.

Table 2. Average scores obtained with the five different scoring functions used and overall ranking.

Target PDB PLP ASP ChemScore GoldScore Vina Overall
Ranking

Acetylcholinesterase
1QON 65.92 43.35 38.89 60.65 −8.37

24EY6 68.27 40.22 38.74 58.03 −9.20
1DX4 61.99 39.41 35.60 56.69 −7.60

alpha-Esterase-7 (αE7)
5TYJ 67.36 37.02 38.75 54.00 −8.23

65TYP 60.73 34.85 35.58 50.38 −7.10

beta-N-Acetyl-D-hexosaminidase
OfHex1

3NSN 70.39 40.87 34.48 58.65 −7.67
43OZP 66.80 32.90 33.93 59.54 −8.53

Chitinase
3WL1 70.75 41.07 35.73 56.36 −8.20

33WQV 70.59 39.42 34.78 57.85 −9.10

Ecdysone receptor
1R20 63.70 32.55 33.41 52.86 −8.13

5
1R1K 62.86 31.13 36.74 53.05 −9.07

N-Acetylglucosamine-1-phosphate
uridyltransferase (GlmU)

2V0K 51.73 22.19 25.16 50.72 −7.07
11

2VD4 46.41 23.58 25.98 41.70 −6.17

Octopamine receptor 4N7C 42.71 27.27 32.65 31.28 −2.80 12

Odorant Binding Protein

5V13 80.20 47.14 42.51 61.32 −10.53

1
2GTE 65.24 34.53 38.12 56.36 −7.47

3N7H 76.33 40.08 35.80 64.24 −8.30

3K1E 85.78 44.69 43.00 66.22 −7.67

Peptide deformylase 5CY8 69.86 27.06 27.34 59.16 −6.77 8

p-Hydroxyphenylpyruvate dioxygenase 6ISD 59.82 34.04 30.74 50.15 −8.37 9

Polyphenol oxidase 1BUG 46.14 24.86 23.04 48.66 −6.30 13

Sterol carrier protein-2 (HaSCP-2) 4UEI 60.26 32.37 35.79 49.44 −8.77 7

Voltage-gated sodium channel 6A95 55.70 22.09 26.92 50.39 −7.67 10

It must be kept in mind that GOLD and Vina SFs are based on different metrics and
scales. For the GOLD SFs, the score is dimensionless with a higher value indicating a better
binding affinity. On the contrary, the Vina scoring function uses a metric that approximates
that of binding free energies, and so a more negative value means better affinity.

Overall, the results showed good consistency across all the SFs, with odorant binding
proteins (OBP), acetylcholinesterases (AChE) and chitinases yielding better scores. Polyphe-
nol oxidase, octopamine receptor and N-acetylglucosamine-1-phosphate uridyltransferase
(GlmU), however, consistently presented lower scores.

The structures with the best score across all SFs from the OBP (3K1E) and from AChE
(1QON) were selected to move on to MD simulations and Free Energy calculations.

3.3. Molecular Dynamics Simulations and Free Energy Calculations Results

Molecular dynamics simulations were performed for the complexes formed with the
benzamide derivatives and the two groups of targets predicted at the inverted VS stage:
odorant binding proteins and acetylcholinesterases. The structure with the best score from
each group was selected (3K1E for OBP and 1QON for acetylcholinesterases (AChE)). The
inverted screening predictions were confirmed and further analyzed. Furthermore, the
protein–ligand interactions established were studied, and the most determinant residues
were defined. The results are presented in Table 3.
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Table 3. Average RMSD values (Å), ligand RMSF (Å), average SASA (Å2), percentage of potential
ligand SASA buried and the average number of hydrogen bonds for the ligands for the last 70 ns of
the simulation of the OBP and AChE–ligand complexes.

Average
RMSD of the
Complex (Å)

Average
RMSD of the

Ligand (Å)

Average
SASA (Å2)

Percentage of
Potential

Ligand SASA
Buried (%)

Average
Number of

Hbonds

∆Gbind
(kcal/mol) Main Contributors

OBP

4a 2.2 ± 0.2 1.2 ± 0.4 70.8 ± 25.5 83 0.01 ± 0.1 −28.1 ± 0.2 Leu64 (−2.0 ± 0.7); Ala79
(−1.6 ± 0.5); Trp105 (−1.4 ± 1.0)

4b 2.3 ± 0.4 1.0 ± 0.2 77.4 ± 16.9 82 0.1 ± 0.2 −28.8 ± 0.1 Leu64 (−2.2 ± 0.5); His68
(−1.8 ± 0.5); Ala79 (−1.4 ± 0.3)

5 2.1 ± 0.2 1.3 ± 0.2 41.9 ± 15.6 93 0.1 ± 0.2 −38.5 ± 0.1 Trp105 (−2.4 ± 0.7); Ala79
(−2.3 ± 0.7); Leu67 (−1.8 ± 0.5)

AChE

4a 4.6 ± 0.5 0.6 ± 0.3 38.7 ± 19.2 91 0.1 ± 0.3 −25.4 ± 0.1 Tyr69 (−1.5 ± 0.6); Gly148
(−1.3 ± 0.5); Tyr322 (−1.0 ± 0.5)

4b 2.9 ± 0.2 0.8 ± 0.3 39.9 ± 8.8 91 0.2 ± 0.4 −25.5 ± 0.1 Tyr69 (−2.2 ± 0.6); Tyr368
(−2.0 ± 0.8)

5 3.0 ± 0.2 0.9 ± 0.2 70.1 ± 21.6 87 0.1 ± 0.3 −32.1 ± 0.2 Tyr372 (−2.8 ± 0.8); Tyr69
(−2.4 ± 0.6); Tyr322 (−1.3 ± 0.7)

When comparing to the initial docking pose, the protein RMSD value for OBP was
around 2 Å. For the AChE complexes, it was higher, but the standard deviation was very
low. This may indicate that in the beginning of the simulation, the AChE–benzamide
complexes were optimized to a more stable conformation. The results confirm that all
molecules remained bound to their targets and that there was an induced-fit adjustment
throughout the simulation.

The solvent accessible surface area (SASA) and the percentage of potential SASA of
the ligands that was buried by the target upon binding were also analyzed. A lower SASA
accompanied by a high percentage of ligand SASA indicates that the molecule is buried in
the target pocket and, therefore, is less exposed to the solvent. For the OBP, it was compound
5 that exhibited the best results, with a SASA of 41.9 Å2 and a percentage of buried ligand
of 93%. The Gibbs energy of association calculated through MM/GBSA calculations also
indicated that the affinity of compound 5 was stronger toward OBP (−38.5 ± 0.1 versus
−32.1 ± 0.2 for AChE). The reverse was true for AChE, with compounds 4a and 4b
presenting a lower SASA (38.7 Å2 and 39.9 Å2, respectively) and higher percentage of
buried ligand (91% for both compounds). However, from all the compounds tested, it
was compound 5 that also showed a stronger affinity toward AChE (−32.1 kcal/mol vs.
−25.4 kcal/mol for compound 4a and −25.5 kcal/mol for compound 4b).

When bound to OBP, the compounds were stabilized primarily by electrostatic interac-
tions with Leu64, Ala79 and Trp105. From all the compounds studied, the results seem to
suggest that compound 5 can be a good antagonist for OBP. Regarding AChE, the main
interacting residues were Tyr69, Tyr322 and Tyr372.
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