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Abstract: The aim of the research is the development of a one-pot method for the synthesis of lig-
nans, natural compounds that show a wide spectrum of biological activities. For this purpose, the
ansa-zirconocenes of various structures were tested as catalysts of allylbenzene cyclometalation with
ethylaluminum dichloride (EtAlCl2) and Mg. The effects of the organophosphorus compounds, hex-
amethylphosphoramide (HMPA) and triphenylphosphine (PPh3), on the chemo- and regioselectivity
of the reaction were studied. The use of η5-indenyl or fluorenyl ansa-complexes with ethanediyl or
dimethylsilylene bridges, as well as a biscyclopentadienyl complex with Si-bound ligands as catalysts
in the presence of HMPA, yields the formation of cyclometalation products in a total yield of 70%.
Cyclometalation product composition is represented by two regioisomers, 3,4-dibenzyl- and 2,4-
dibenzyl-substituted alumolanes, with a ratio of (1-2):1, in which hydrolysis provides corresponding
dibenzylbutane lignan and 9,8′-neo-lignan.

Keywords: cyclometalation; alkenes; zirconocenes; lignane

1. Introduction

Since 1989, the catalytic cycloalumination of alkenes and acetylenes (Dzhemilev reac-
tion) has been developing as a direction of organoaluminum compound (OAC) chemistry.
The reaction provides an effective and stereoselective route for the synthesis of various
classes of organic compounds [1,2].

Among the developed methods, the reaction of terminal alkenes or alkynes with
OAC and Mg, catalyzed by Cp2ZrCl2, which goes through the formation of metallocy-
cles, affords 2,3-disubstituted butanes or 1,4-butanediols with a high diastereoselectivity
(Scheme 1) [1–5]. Using this approach, the one-pot diastereoselective method for the syn-
thesis of dibenzylbutane lignans, a group of natural compounds showing a wide range of
biological activities [6–12], was developed [13,14].

Scheme 1. The reaction of terminal alkenes with OAC and Mg, catalyzed by Cp2ZrCl2.

The structure of the catalyst and the composition of the catalytic system significantly
influence the reaction rate and the chemo- and stereoselectivity. The ansa-effect is well
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known for zirconocenes [15]. As a rule, it causes an increase in catalyst activity. Moreover,
nucleophilic agents can affect the stability of organometallic species. For example, hexam-
ethylphosphoramide (HMPA) possess high solvating ability towards the inorganic ions
and organometallic reagents [16–19]. Phosphine ligands can stabilize intermediates, in
particular zirconacycles [20,21], which are formed in the course of cyclometalation reactions,
and therefore reduce the probability of side processes.

In continuation of our studies [13,14], the ansa-zirconocenes of various structures were
tested as the catalysts of the allylbenzene cyclometalation with ethylaluminum dichloride
(EtAlCl2) and Mg. The effect of the organophosphorus compounds HMPA and triph-
enylphosphine (PPh3) on the chemo- and regioselectivity of the reaction was studied
as well.

2. Results and Discussion

The catalytic action of zirconocenes of various structures (1a–o) in the reaction of
allylbenzene with ethylaluminum dichloride (EtAlCl2) and metallic Mg in tetrahydrofuran
(THF) was studied (Scheme 2 and Table 1). HMPA or PPh3 were used as nucleophilic agents.

Scheme 2. The reaction of allylbenzene with EtAlCl2 and Mg, catalyzed with zirconocenes 1a–o in
the presence of HMPA or PPh3.

It was found that the reaction of allylbenzene with EtAlCl2 and Mg, catalyzed with
zirconocenes in the presence of HMPA or PPh3 affords alumolane regioisomers 3 and 4
(Scheme 2). The acyclic OAC with double bond 5 and hydroalumination product 6 were
identified in the product mixture as well. Hydrolysis or deuterolysis of cyclometalation
products 3 and 4 provide dibenzylbutane lignan 7 and 9,8′-neo-lignan 8.

The addition of HMPA to the reaction mixture with catalyst 1a significantly shortens
the reaction time (Table 1, entries 2–4). As a result, the reaction proceeds in 48 h with an
allylbenzene conversion of 97–99%. The addition of PPh3 led to a decrease in the substrate
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conversion to 61–63% (entries 5,6). The alkene conversion reached 70–98% in the reactions
catalyzed by ansa-zirconocenes. However, among them biscyclopentadienyl and bisindenyl
complexes with isopropylidene bridges 1b and 1h showed minimal activity (entries 7, 13).
The presence of HMPA increased the chemoselectivity of the reaction towards the formation
of cyclic OACs (up to 81%). Nevertheless, the regioselectivity of the process decreased.

Table 1. Reaction of allylbenzene with EtAlCl2 and Mg, catalyzed by Zr complexes 1a–o (22 ◦C, 72 h,
HMPA or PPh3, THF, mole ratio [Zr]:[Mg]:[EtAlCl2]:[allylbenzene]:[HMPA or PPh3] = 1:20:25:20:20).

Entry [Zr] HMPA/PPh3 Alkene Conversion, %
Product Yield, %

7 8 9 10

1 1a - 98 58 8 23 6
2 1a HMPA (0.6 eq) a 97 46 24 14 13
3 1a HMPA a 99 44 23 20 12
4 1a HMPA (2 eq) a 99 49 23 17 10
5 1a PPh3 63 29 9 15 10
6 1a PPh3 (3 eq) 61 23 9 26 5
7 1b HMPA <1 - - - -
8 1c HMPA 82 24 15 16 25
9 1d HMPA 63 25 15 7 15
10 1e HMPA 48 22 4 7 12
11 1f HMPA 58 22 10 3 6
12 1g HMPA 76 27 25 12 8
13 1h HMPA <1 - - - -
14 1i HMPA 83 35 23 14 9
15 1i HMPA 70 29 21 2 15
16 1j HMPA 82 36 26 11 7
17 1k HMPA 96 38 41 4 13
18 1l HMPA 98 41 40 5 12
19 1m HMPA 87 46 31 6 4
20 1n - 70 47 13 5 2
21 1o HMPA 6 2 <1 <1 <1

a reaction time—48 h.

The most active catalysts in the reaction of allylbenzene with Et2AlCl and Mg was
found to be ansa-complexes with ethanediyl (1g,i) (entries 12,14) or dimethylsilylene (1i–m)
bridges (entries 15–20), containing η5-indenyl or fluorenyl fragments, as well as a biscy-
clopentadienyl complex with Si-bound ligands (1c) (entry 8). In the presence of these
complexes, the conversion of allylbenzene was 70–98% and the reaction proceeded with
the predominant formation of cyclometallation products 3,4 with a total yield of up to 70%
and a regioisomer ratio 3:4 = (1–3.6):1. However, despite the increase in the activity and
chemoselectivity of catalytic systems based on Zr ansa-complexes due to the introduction
of HMPA, the regioselectivity of the reaction decreased (see, for example, complex 1m,n,
entries 19, 20). The use of a Si-bound bistetrahydroindenyl (1o) instead of a bisindenyl
ligand (1m) in the catalyst structure leads to an almost complete loss of activity.

3. Materials and Methods
General Procedures

All operations for organometallic compounds were performed under argon according to
Schlenk technique. THF and diethyl ether were dried and distilled from sdium/benzophenone
before use. Commercially available allylbenzene (98%, Acros) and EtAlCl2 (97%, Merck).
CAUTION: the pyrophoric nature of aluminum alkyl compounds requires special safety
precautions in their handling. Zirconocenes 1a–1o were synthesized according to known
procedures: 1a [22], 1b [23], 1c [24], 1d [25], 1e [26], 1f, 1g, 1i [27,28], 1h [29], 1j [30,31],
1k [32,33], 1l [34], 1m [35], 1n [36], 1o [37] from ZrCl4 (98%, Acros).

1H and 13C NMR spectra were recorded on a Bruker AVANCE-400 spectrometer
(400.13 MHz (1H), 100.62 MHz (13C)) (Bruker, Rheinstetten, Germany). As solvents and
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the internal standards, CD2Cl2 and CDCl3 were employed. The 1D and 2D NMR spectra
(COSY HH, HSQC, HMBC, NOESY) were recorded using standard Bruker pulse sequences.
The yields of OAC products were determined by analyzing the mixture of deuterolysis or
hydrolysis products 7–10 using a gas chromatograph-mass spectrometer GCMS-QP2010
Ultra (Shimadzu, Tokyo, Japan) equipped with the GC-2010 Plus chromatograph (Shi-
madzu, Tokyo, Japan), TD-20 thermal desorber (Shimadzu, Tokyo, Japan), and an ultrafast
quadrupole mass-selective detector (Shimadzu, Tokyo, Japan).

The obtained NMR and the mass spectral characteristics of compounds 7–10 corre-
spond to the literature data [13,14].

4. Conclusions

It was shown that the structure of the η5-ligand at the Zr atom significantly affects the
activity of the system, and the presence of HMPA increases the yield of cyclometalation
products up to 77%. The reaction proceeds with the formation of regioisomers of 3,4-
dibenzyl- and 2,4-dibenzyl-substituted alumolanes with a ratio (1-2):1, which hydrolysis
provides corresponding dibenzylbutane and 9,8′-neo-lignans.
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