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Abstract: CDKs are pivotal mediators essential for the cellular cycle progression. CDKs have relatively
constant levels, and their activity is regulated by cyclins, proteins whose concentrations fluctuate
during each cell cycle. Consequently, more CDK family members were found that occupy crucial
functions in a variety of processes. Moreover, CKS2 is a member of the CDK family, which has been
implicated in several malignancies as an oncogene. Additionally, CKS2 is engaged in many biological
processes, including the cell cycle transition. CKS2 may act synergistically to promote embryonic
development and somatic cell division. Current CDK2 drugs, however, also suppress CDK1, posing a
toxicity risk. Investigators demonstrated that the potential conformational maps of cyclin-free CDK1
and CDK2 exhibit slight but substantial differences. The CDK1 unique characteristics may be used to
distinguish it from other CDKs in prospective cancer treatment design. Computational-based in silico
docking investigations were performed to uncover promising CDK1/Cks2 (6GU7) inhibitors utilizing
the Maestro tool. Curcumin, quercetin, withanolide, and genistein were selected against the protein
CDK1/Cks2 for protein–ligand XP docking. The physicochemical, lipophilicity, water-solubility,
pharmacokinetics, drug-likeness, medicinal chemistry, and toxicological properties were analyzed
using SwissADME and pkCSM of the selected ligands. Curcumin exerted an excellent docking score
complexed with 6GU7 compared to other ligands. The revealed hit may be a potent inhibitor of 6GU7.
However, it will require to be assessed extensively in vivo and in vitro experimental models.

Keywords: cell cycle; cyclin; cyclin-dependent kinase1; cyclin-dependent kinases regulatory subunit
2; structure-based docking; 6GU7

1. Introduction

CDKs are serine/threonine kinases that require a governing subunit component
known as a cyclin to function. CDKs, MAPKs, Gsk3β, members of the DYRK family, and
CDK-like kinases all contribute to the CMGC group of kinases (called after the initials
of several members), together with MAPKs, Gsk3β, and CDK-like kinases [1]. In closely
similar kinases, including MAPKs, substrate sophistication is imparted via docking sites
distinct from the catalytic region, but CDKs are defined by their reliance on distinct protein
subunits that include different sequences essential for enzymatic activity [2]. CDK family
members undertake a plethora of activities in the cell, including cell cycle and transcription
monitoring, and differentiation in particular cell types [3,4]. CDK function imbalance is
closely attributed to atypical cell progression, and as a consequence, numerous members
of the CDK family were targeted as anticancer therapeutic targets [5,6]. Moreover, CDKs
are proteins that influence cell cycle progression and are consequently promising targets in
cancer. The activity of CDKs is regulated by their interaction with cyclin-dependent kinases,
phosphatases, and particular inhibitors. Multiple CDK complexes operate at distinct
stages [7]. CDK1 is a crucial regulator of the cell cycle commencement and progression
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through mitosis. Prior investigation has established that loss of CDK1 function or abnormal
CDK1 expression is associated with G2 phase arrest and various tumor forms, confirming
CDK1 as a therapeutic candidate. As a result, there was a spike in attention to developing
potent CDK1 inhibitors as promising chemotherapeutic agents [4]. CKS2 belongs to the
CDK family that was pinpointed as an oncogene in a variety of cancers.

Furthermore, CKS2 is also involved in the cell cycle transition in a variety of bio-
logical functions. CKS2 may pointedly enhance embryonic progression and somatic cell
division [8]. However, mounting data suggested that CKS2 may play a role in tumor
development [9]. Curcumin, a polyphenol derived from Curcuma longa, has garnered
global prominence for its biological properties, including antioxidant, antimicrobial, anti-
inflammatory, and antiviral, the most well-documented of which are its anticancer activities,
which are currently under investigation [10–12]. It is demonstrated that curcumin plays a
crucial role in cell signaling cascades implicated in cancer growth and proliferation that
curcumin targets. Curcumin was shown to affect enzymes, growth factors, kinase, transcrip-
tion factors, inflammatory cytokines, antiapoptotic (by downregulation), and proapoptotic
(by upregulation) proteins [13,14]. However, quercetin is the most abundant flavonoid
flavonol. Quercetin is found in various fruits and vegetables and is among the most preva-
lent flavonols in the western diet [15,16]. Anticancer properties of quercetin comprise its
potency to induce cell death, autophagy, and apoptosis via regulation of the Wnt/-catenin,
PI3K/Akt/mTOR, and MAPK/ERK1/2 pathways [17–19]. Moreover, withanolides are a
broad class of steroidal lactones abundant in Solanaceae plants that were shown to have
anticancer properties [20,21]. Withanolide was shown to inhibit and/or constrain tumor
development in humans [22,23]. Genistein is an isoflavone found in soy that has various
molecular actions, including the suppression of inflammation, the stimulation of apoptosis,
and the regulation of metabolic pathways and steroidal hormone receptors [24,25]. Because
these molecular changes influence carcinogenesis, obesity, cancer progression, metabolic
syndromes, and osteoporosis, genistein is crucial for protecting and controlling common
diseases. Genistein is a chemotherapeutic agent that suppresses metastasis in several kinds
of cancer by modifying apoptosis, angiogenesis, and the cell cycle [26–28].

2. Materials and Methods
2.1. Receptor Preparation

The crystal structure of the target protein CDK1/Cks2 (PDB id: 6GU7) with the
inhibitor-bound structure was obtained from the protein data bank (https://www.rcsb.
org/, accessed on 10 March 2021) [29]. The Protein Preparation Wizard (PPW) tool [30] of
the Maestro v.11.2 (Maestro, Schrödinger, LLC, New York, NY, USA) was performed for
protein preparation. The PPW tool includes three-step stratagems, including importing and
refining, reviewing and modifying, and optimizing and minimizing the protein. In the first
instance, the protein (PDB id: 6GU7) was pre-processed by appending hydrogen atoms,
eliminating displeased water molecules afar 5 Å from the hetero group and generating het
states applying Epik [31] at pH 7.0 (+/−2). Allocating the RMSD of 0.30 Å through the
OPLS3e force fields [32], the protein was minimized.

2.2. Ligand Preparation

The ligands (Figure 1), curcumin (PubChem CID: 969516), quercetin (PubChem CID:
5280343), withanolide (PubChem CID: 53477765), and genistein (PubChem CID: 5280961)
were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 10 March 2021)). The LigPrep tool (LigPrep, Schrödinger, LLC, New York, NY, USA)
was used to convert to three-dimensional form and the production of potential tautomers
and conformers. The LigPrep tool was performed at neutral ionization and the OPLS3e
force field for minimizing the ligands.

https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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Figure 1. The chemical structures of curcumin, quercetin, withanolide, and genistein.

2.3. Molecular Docking Study

All docking studies were performed using the GLIDE program [33] of Maestro (v.11.2),
which identifies good associations between the ligand and the protein. A grid was con-
structed at the site of a co-crystallized ligand employing the Receptor Grid Generation tool.
This grid reflects the features of the focused protein and the curvature utilized to produce a
more comprehensive ligand, poses assessment. The Extra Precision (XP) docking mode
was performed during the protein–ligand docking procedure.

2.4. ADMET Analysis

Investigators use in silico technologies to anticipate the ADMET properties of the
ligands and their impurities to assist in the quality monitoring of medicines [34]. The
SwissADME [35] and the pkCSM [36] servers were used to predict the ADMET properties
of the selected ligands.

3. Results and Discussion
3.1. Analyzing Molecular Docking Results and Binding Interactions

Pharmaceutical research has effectively integrated various molecular modeling tech-
niques into several drug development programs to explore complicated biological and
chemical processes. Combining computational and experimental techniques has proven
highly beneficial in identifying and developing innovative, promising chemicals [37,38].
Frequently employed in contemporary drug design, molecular docking techniques investi-
gate the conformations of ligands inside macromolecular target binding sites. Additionally,
this technique calculates the free energy of ligand–receptor interaction by examining critical
events engaged in the intermolecular interaction mechanism [39,40]. The XP molecular
docking (grid box size as of 10 Å × 10 Å × 10 Å) was performed using the GLIDE pro-
gram. The XP docking measured the docking scores of the 6GU7-curcumin complex,
6GU7-quercetin complex, 6GU7-withanolide complex, and 6GU7-genistein complex as of
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−9.419 kcal/mol, −8.709 kcal/mol, −7.174 kcal/mol, and −6.301 kcal/mol, respectively
(Table 1, Figure 2).

Table 1. The XP docking scores with different binding interactions.

Protein–Ligand Complex Docking Score
(kcal/mol) H-Bond Non-Bonding Interactions

6GU7-curcumin −9.419 ASP146, LYS33,
GLU81, LEU83

Polar
THR14, SER84, GLN132, GLN49

Hydrophobic
LEU149, ILE10, ALA145, VAL18, ALA31, VAL64,

PHE80, PHE82, LEU83, LEU135
Charged (Negative)

GLU12, ASP146, GLU81, ASP86
Charged (Positive)

LYS33, LYS88, LYS89

6GU7-quercetin −8.709 ASP146, LEU83,
SER84, ASP86

Polar
SER84

Hydrophobic
Val18, ALA145, VAL64, ALA31, PHE 80, LEU135,

ILE10, PHE82, LEU83, MET85
Charged (Negative)

ASP146, GLU81, ASP86
Charged (Positive)

LYS33, LYS89

6GU7-withanolide −7.174 LEU83

Polar
GLN132, ASN133, THR14, GLN49

Hydrophobic
VAL165, LEU135, ALA145, VAL64, PHE80, ALA31,

PHE82, LEU83, VAL18, ILE10
Charged (Negative)

ASP146, GLU81, ASP86, GLU12
Charged (Positive)

LYS130, LYS33

6GU7-genistein −6.301 ASP146, SER 84

Polar
GLN132, SER84

Hydrophobic
LEU135, VAL18, ALA145, LEU149, VAL64, VAL31,

PHE80, ILE10, PHE82, LEU83, MET85
Charged (Negative)

ASP146, ASP86
Charged (Positive)

LYS33, LYS89
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3.2. ADMET Analysis

In the field of efficient medication, a potent molecule must approach its target in the
body in a bioactive state and remain there long enough for the predicted physiological
activities to transpire. Drug development progressively incorporates ADMET screening
early in the discovery phase, when the number of candidate compounds is large, but
the availability of physical samples is restricted. In this situation, computer models are
viable substitutes for experimentation [41,42]. Investigators implement the existing Swis-
sADME [35] web platform that provides free access to a reservoir of rapid yet reliable
prognostic models for pharmacokinetics, physicochemical characteristics, drug-likeness,
and medicinal chemistry pleasantness, including proprietary methods the iLOGP [43],
BOILED-Egg [44], and Bioavailability Radar to assist in their drug development accom-
plishments. Moreover, the pkCSM employs the utilization of graph-based identifications to
anticipate pharmacokinetic characteristics. These reflect the tiny molecule and are exploited
to train prediction algorithms [36,45].

Physicochemical properties refer to the inherent physical and chemical features of a
substance. Curcumin, quercetin, withanolide, and genistein have a molecular weight of
368.38 g/mol, 302.24 g/mol, 470.60 g/mol 270.24 g/mol with the number of heavy atoms
of 27, 22, 34, and 20, respectively (Table 2). Curcumin and withanolide contain the fraction
Csp3 values of 0.14 and 0.79, whereas quercetin and genistein remain nil. It is observed that
selected ligands, except withanolide, proclaim a breach in unsaturation (0.25 < Fraction
Csp3 < 1) (Figure 3). Moreover, all ligands represent outstanding flexibility (0 < rotatable
bonds < 9). Curcumin, quercetin, withanolide, and genistein contain H-bond acceptors as
of 6, 7, 6, and 5, respectively. Quercetin displays a violation in H-bond donors (<5) and in
polarity (20 Å2 < TPSA < 130 Å2) compared to other ligands.
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Table 2. Interactions of 6GU7 with curcumin, quercetin, withanolide, and genistein.

Curcumin Quercetin Withanolide Genistein

Physicochemical Properties

Molecular weight (g/mol) 368.38 302.24 470.60 270.24
Heavy atoms 27 22 34 20
Fraction Csp3 0.14 0.00 0.79 0.00

Rotatable bonds 8 1 2 1
H-bond acceptors 6 7 6 5

H-bond donors 2 5 2 3
TPSA (Å2) 93.06 131.36 96.36 90.90

Lipophilicity

Log Po/w (iLOGP) 3.27 1.63 3.62 1.91
Log Po/w (XLOGP3) 3.20 1.54 3.12 2.67
Log Po/w (WLOGP) 3.15 1.99 3.50 2.58
Log Po/w (MLOGP) 1.47 −0.56 2.75 0.52

Log Po/w (SILICOS-IT) 4.04 1.54 3.78 2.52
Water Solubility

Log S (ESOL) −3.94 −3.16 −4.59 −3.72

Solubility (mg/mL; mol/L) 4.22 × 10−2;
1.15 × 10−4

2.11 × 10−1;
6.98 × 10−4

1.21 × 10−2;
2.56 × 10−5

5.11 × 10−2;
1.89 × 10−4

Class Soluble Soluble Moderately soluble Soluble
Pharmacokinetics

GI absorption High High High High
BBB permeant No No No No
P-gp substrate No No No No

Log Kp (skin permeation) (cm/s) −6.28 −7.05 −6.96 −6.05
Druglikeness

Lipinski Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation

Ghose Yes Yes No; 1 violation:
#atoms > 70 Yes

Veber Yes Yes Yes Yes
Egan Yes Yes Yes Yes

Muegge Yes Yes Yes Yes
Bioavailability Score 0.55 0.55 0.55 0.55
Medicinal Chemistry

PAINS 0 alert 1 alert: catechol_A 0 alert 0 alert

Brenk
2 alerts:

beta_keto_anhydride,
michael_acceptor_1

1 alert: catechol 1 alert: Three-
membered_heterocycle 0 alert

Leadlikeness No; 2 violations:
MW > 350, Rotors > 7 Yes No; 1 violation:

MW > 350 Yes

Synthetic accessibility 2.97 3.23 6.85 2.87
Toxicological Properties

AMES toxicity No No No No
Max. tolerated dose (human)

(log mg/kg/day) 0.081 0.499 0.867 0.478

hERG I inhibitor No No No No
hERG II inhibitor No No No No

Oral Rat Acute Toxicity (LD50)
(mol/kg) 1.833 2.471 2.831 2.268

Oral Rat Chronic Toxicity (LOAEL)
(log mg/kg_bw/day) 2.228 2.612 1.776 2.189

Hepatotoxicity No No No No
Skin Sensitization No No No No
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Figure 3. The physicochemical space for oral bioavailability. The bioavailability radar provides an ini-
tial assessment of drug-likeness of a molecule. The colored zone is the suitable physicochemical space
for oral bioavailability. The comprehending outcomes for physicochemical space of curcumin (Pub-
Chem CID: 969616), quercetin (PubChem CID: 5280343), withanolide (PubChem CID: 53477765), and
genistein (PubChem CID: 5280961) were illustrated following the parameters as of LIPO (Lipophility):
−0.7 < XLOGP3 < +5; SIZE: 150 g/mol < MW < 500 g/mol; POLAR (Polarity): 20 Å2 < TPSA < 130 Å2;
INSOLU (Insolubility): 0 < Log S (ESOL) < 6; INSATU (Unsaturation): 0.25 < Fraction Csp3 < 1; and
FLEX (Flexibity): 0 < Num. rotatable bonds < 9.

Lipophilicity is traditionally defined by the partition coefficient between n-octanol and
water (log Po/w) [46]. Numerous computer techniques for estimating log Po/w have been
devised with varying degrees of effectiveness on various chemical combinations. Several
predictors are frequently used to choose the best reliable techniques for a particular chemical
combination or create a consensus approximation [47]. Curcumin, quercetin, withanolide,
and genistein have the iLOGP [43] values of 3.27, 1.63, 3.62, 1.91, respectively. All ligands,
including curcumin, quercetin, withanolide, and genistein represent sublime lipophilicity
(−0.7 < XLOGP3 < +5) [48]. The WLOGP values for the completely atomistic approach
centered on Wildman and Crippen’s fragmental methodology [49] determined for curcumin,
quercetin, withanolide, and genistein are 3.15, 1.99, 3.50, 2.58, respectively. The MLOGP is a
prototypical topological strategy based on a linear connection [50,51]. The MLOGP values
for curcumin, quercetin, withanolide, and genistein are 1.47, −0.56, 2.75, 0.52, respectively.
The hybrid technique SILICOS-IT describes the topological descriptors [51] for curcumin,
quercetin, withanolide, and genistein as 4.04, 1.54, 3.78, and 2.52, respectively.

Possessing a soluble molecule simplifies several drug development processes, most
notably handling and formulation [52]. Moreover, for discovery initiatives aimed at oral
delivery, solubility is a critical factor affecting absorption [53]. Additionally, a medication
intended for parenteral administration must be highly soluble in water to provide an
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adequate amount of active components in such a tiny volume of pharmaceutical dose [54].
The Log S (ESOL) values [55] are −3.94, −3.16, −4.59, −3.72; and the solubility as of
4.22 × 10−2 mg/mL (1.15 × 10−4 mol/L), 2.11 × 10−1 mg/mol (6.98 × 10−4 mol/L),
1.21 × 10−2 mg/mL (2.56 ×105 mol/L), and 5.11 × 10−2 mg/mL (1.89 × 10−4 mol/L)
for curcumin, quercetin, withanolide, and genistein, respectively. Curcumin, quercetin,
and genistein are anticipated as soluble, whereas withanolide is predicted as moderately
soluble.

Pharmacokinetics is the study of how medicines enter into, circulate through, and
exit the body. The way an individual reacts to a specific medicine is determined by the
substance’s inherent pharmacological characteristics at the site of action [56–58]. Both
passive human gastrointestinal (GI) absorption and blood–brain barrier (BBB) penetration
estimates are made using the BOILED-Egg model as a conclusion [59]. All those selected
have high GI absorption levels with negative BBB permeant features. Understanding
which compounds are substrates or non-substrates for the permeability glycoprotein (P-gp,
recommended to be the most crucial representative of the ABC-transporters) is critical for
evaluating active efflux across biological membranes, for example, from the gastrointestinal
wall to the lumen or from the brain [60]. P-gp plays a critical function in protecting the
CNS against xenobiotics [61]. Additionally, P-gp is abundantly expressed in some tumor
cells, resulting in multidrug-resistant cancers [62]. The estimated P-gp substrate values for
curcumin, quercetin, withanolide, and genistein were reported as unfavorable. The skin
permeability coefficient (Kp) values for curcumin, quercetin, withanolide, and genistein
are −6.28 cm/s, −7.05 cm/s, −6.96 cm/s, and −6.05 cm/s, respectively, therefore, all the
selected ligands that were assessed have less skin permeation propensity [63].

Drug-likeness evaluates qualitatively the potential of a chemical becoming an oral
drug in terms of bioavailability. The drug-likeness was determined via structural or
physicochemical evaluations of compounds in development that had advanced sufficiently
to be presumed, oral drug candidates. This concept is frequently used to filter chemical
libraries to eliminate compounds with characteristics that are most likely contradictory
to a satisfactory pharmacokinetic profile [64,65]. All ligands contain positive Lipinski
values [66] without any violation, whereas withanolide has a Ghose value [67] in negative
with one violation (Num. of atoms > 70) compared to the rest. Moreover, Curcumin,
quercetin, withanolide, and genistein contain Veber [68], Egan [69], and Muegge [70] values
in the positive. Surprisingly all selected ligands contain the same bioavailability score [71]
of 0.55 each.

The Medicinal Chemistry section is intended to assist medicinal chemists in their
regular drug development initiatives. Even though curcumin, withanolide, and genistein
contain no alert for PAINS assessment [72], quercetin has an alert for catechol-A. Curcumin
has two alerts for Brenk evaluation [73], whereas quercetin and withanolide have a single
alert for each, and genistein has no alert compared to others. Both quercetin and genistein
positively impact Lead-likeness [74], whereas curcumin and withanolide have two and a
single violation, respectively. A significant attribute of CADD operations is identifying
the most favorable simulated molecules for synthesization and submission to biological
assessments or other investigations. In this evaluation procedure, synthetic accessibility
(SA) is a vital component to consider [75,76]. Curcumin, quercetin, withanolide, and
genistein contain the SA values of 2.97, 3.23, 6.85, and 2.87.

The AMES toxicity test is an extensively used strategy for determining the mutagenesis
potential of a substance using bacteria. A positive test demonstrates that the chemical
is mutagenic and hence has the potential to cause cancer [77–79]. Indeed, curcumin,
quercetin, withanolide, and genistein have no mutagenesis potential. The MRTD represents
an approximation of a chemical’s hazardous dosage threshold in humans [80,81]. Curcumin
has the lowest MRTD (0.081), whereas quercetin, withanolide, and genistein have elevated
MRTD compared to each other. Surprisingly, all ligands, including curcumin, quercetin,
withanolide, and genistein, do not show hepatotoxicity, skin sensitization, or hERG I and
II inhibitor effects. It is imperative to evaluate the hazardous potential of a compound.
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The lethal dose estimates (LD50) are a common method for determining the acute toxicity
of various compounds. LD50 is the dose of a compound that causes 50% death of a set
of test animals when administered all at once [82]. Curcumin has the lowest LD50 value
(1.833 mol/kg) compared to quercetin (2.471 mol/kg), withanolide (2.831 mol/kg), and
genistein (2.268 mol/kg). Moreover, withanolide has a diminished LOAEL value compared
to curcumin, quercetin, and genistein.

4. Conclusions

CDK1 is an essential mediator of the initiation and advancement of the cell cycle
during mitosis. CKS2 is a member of the CDK family, which was implicated in several
malignancies as an oncogene. Because CDK1 alone or in tandem with other treatment
options was connected to powerful anticancer effects, it was postulated that CDK1 may
be the preferred CDK benchmark for cancer treatment. The present investigation used
an in silico strategy targeting potential inhibitors against the CDK1/Cks2 protein (6GU7)
for advancements in cancer treatment. Curcumin, quercetin, withanolide, and genistein
were selected as promising candidates for XP molecular docking against 6GU7 with the
Maestro program. The SwissADME and the pkCSM anticipated the ADMET properties of
the selected ligands. Analyzing the different binding interactions, curcumin showed a high
binding affinity with 6GU7 compared to quercetin, withanolide, and genistein. However,
in vivo and in vitro investigations are required to evaluate the current study.
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