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Abstract: In present work, one-pot synthesis of some new 2,4-disubstitued thiazolyl pyrazole deriva-
tives was carried out. The reaction of different pyrazole 4-carbalaldehydes, thiosemicarbazides
and α-haloketones in one pot afforded the target molecules. The synthesis was carried out via two
methods: one conventional method, whereby pyrazole 4-carbaldehydes, thiosemicarbazides, and
α-haloketones were refluxed in ethanol; and a second way, where the reaction mixture was ground
at RT. The rate of the reaction, yield of the products, and purity of the products were compared for
both methods. All of the synthesized compounds were tested for their antimicrobial activities. It
was found that most of the compounds showed good-to-moderate antibacterial as well as antifungal
activities.

Keywords: 2,4-disubstituted thiazolyl pyrazole; pyrazole 4-carbaldehydes; α-haloketones; thiosemi-
carbazides; one pot; antimicrobial activities

1. Introduction

The importance of new biologically active molecules in the pharmaceutical industry
has encouraged chemists to engage in their capable and fast synthesis, so as to provide
useful benefits for society. Today, modern and fast technologies have motivated scientists
and researchers to synthesize and develop new effective drug molecules. The synthesis
and design of pyrazole and thiazole derivatives are of great interest due to their extensive
applications in the pharmaceutical and agrochemical industries. The interest in the study
of pyrazole chemistry is still ongoing due to its broad spectrum of biological activities,
such as antibacterial [1–6], antiviral [7,8], antiproliferative, proapoptotic [9], antitumor [10],
anti-inflammatory [11,12], and herbicidal activities [13]. Furthermore, thiazole heterocycles
are a noteworthy class of heterocyclic compounds that are present in several important
biologically dynamic drug molecules, such as the antiretroviral drug ritonavir, the an-
timicrobial drug sulfathiazole, the antineoplastic drug tiazofurin, and the antifungal drug
abafungin [14]. Thiazole-containing heterocycles show various biological activities, such
as antifungal [15], anticancer [16–20], and anti-HIV activity [21], as well as acting as a
metabotropic glutamate receptor 1 (mGluR1) antagonist [22]. On the other hand, it has
been observed that when thiazole is in combination with the pyrazole nucleus, it exhibits
different biological activities, including antitubercular [23–28], anti-inflammatory, and
antimicrobial effects [29,30], as well as acting as a protein synthase III (FabH) inhibitor [31].

All of these observations inspired us to design and synthesize new effective drug
molecules containing thiazole and pyrazole nuclei together, and to assess their antibacterial
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and antifungal activities, expecting that these new moieties could be the effective heterocy-
cle in the library of recognized drug molecules. Thus, in our study we synthesized a new
derivative of heterocycles containing pyrazole and thiazole molecules in one component,
which may show more effective biological activities.

In an extension of our work [32–35] on the preparation of new products with com-
binations of dissimilar heterocyclic moieties as possible antimicrobial agents, we report
here the synthesis of some new pyrazole derivatives containing thiazole scaffolds. The
intermediate pyrazole carbaldehydes 3a–d were synthesized by a known method from the
literature [36,37]. A series of pyrazole-containing thiazole derivatives 4a–l (Scheme 1) were
synthesized, and all of the synthesized compounds were screened for their antimicrobial
activity.
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2. Results and Discussion

The structure of all of the synthesized compounds 4a–l was characterized by analysis
of IR, 1H NMR, 13C NMR, mass, and elemental spectra. The IR bands at 3300–3340,
1545–1550, and 1620–1640 cm−1 showed the presence of NH, C=C, and C=N, respectively.
In the 1H NMR spectra, a broad signal appeared at 12.1 ppm due to NH, a singlet appeared
at 9.1–9.2 ppm due to a pyrazolyl proton, a singlet appeared at 7.68 ppm due to a thiazolyl
proton, and a multiplet appeared at 7.4 to 8.3 ppm due to aromatic protons. The molecular
ion peaks of all of the synthesized compounds were obtained from EI-MS, while the



Chem. Proc. 2022, 8, 46 3 of 9

presence of M+2 peaks were characteristic for the compounds with chlorine, bromine, and
sulfur atoms. Analogously, all other compounds were characterized by spectroscopic and
analytical data, which are presented in the Experimental Section.

The grinding of aldehydes with thiosemicarbazides and α-haloketones was carried
out at room temperature to afford the corresponding 2,4-disubstituted thiazole derivatives
at a high yield (80–90%). In a typical procedure, pyrazole aldehydes react with thiosemicar-
bazides and α-haloketones to provide excellent yields of 2,4-disubstituted thiazoles after
just a few minutes of grinding. To optimize the reaction conditions, the reaction between
3-(3,5-bis(trifluoromethyl) phenyl 1)-1-phenyl-1H-pyrazole-4-carbaldehyde thiosemicar-
bazide and 4-chloro phenacyl bromide was chosen as a model reaction as shown in Table 1.
The reaction was completed after grinding for 4 min, and afforded a 2,4-disubstituted
thiazole derivative with 85% yield. After optimizing the conditions, we next examined
the scope and generality of this method using different pyrazole 4-carbaldehydes. It was
observed that all reactions were completed within 5–10 min by grinding without any cata-
lyst or solvent at ambient temperature. However, highly efficient grinding was required
for the success of these reactions. When attempts were made to carry out the synthesis
of thiazole derivatives by conventional methods in ethanol under reflux temperature, it
required more time, and the yield of the products was in the range of 60–70% (Table 1).
In general, reactions under solvent-free conditions were clean, rapid, and afforded higher
yields than those obtained via conventional methods in ethanol.

Table 1. Table showing the differences between the conventional and solvent-free methods.

Compound
Yield (%) Time

Solvent Free Conventional Conventional (h) Solvent Free (min)

4a 85 65 4 6

4b 81 62 4.3 7

4c 86 63 4.4 6–7

4d 87 68 3.4 3

4e 89 70 3.2 3–4

4f 92 72 3.4 3

4g 90 70 4 3

4h 85 69 3.1 4

4i 88 69 3.2 4

4j 85 65 4 4–5

4k 84 67 4.1 5

4l 86 66 4.3 5

3. Biological Results and Discussion

All of the synthesized compounds were screened for their antibacterial and antifungal
activities, and the results are shown in Table 2. It was found that most of the compounds
showed good-to-moderate activity against both Gram-positive and Gram-negative bacteria.
It was noted that the substituent R on the phenyl ring does not affect the biological activity
to a large extent, but the substituent R1 was found to play important role in determining
the biological activity. It was observed that when R1 was a strong electron-withdrawing
compound similar to NO2 (i.e., compounds 4a, 4d, 4g, and 4j), it showed enhancements in
antifungal as well as antibacterial activities, as compared to compounds 4c, 4f, 4i, and 4l,
where the substituent R1 was 4-Cl. The derivatives in which the R1 group was at position 3
(i.e., compounds 4b, 4e, 4h, and 4k) showed less antimicrobial activities.
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Table 2. Antimicrobial screening of synthesized compounds 4a–l.

Compound S. aureus E. coli B. subtilis P. aeruginosa A. niger C. albicans

4a 18.5 16.0 17.2 13.0 11.3 -

4b 12.2 - 11.1 7.5 - 4.8

4c 16.4 14.0 - - 9.3 8.3

4d 18.0 - 17.1 15.6 11.1 10.1

4e 11.6 - 10.5 - 5.9 -

4f - 12.1 14.5 10.2 8.5 7.4

4g 18.2 15.3 - 15.7 10.8 -

4h 12.0 - 11.5 - 5.6 -

4i 15.0 12.3 - 10.3 8.4 7

4j 17.6 14.0 16.4 12.1 - 10

4k - 7.0 9.6 5.7 4.3 3.9

4l 15.2 13.1 - 10.0 - 7.5

Nystatin NA NA NA NA 21.12 21.96

Chloramphenicol 32.8 29.1 30.1 24.6 NA NA
Chloramphenicol (100 µg/disc) and nystatin (100 µg/disc) were used as references; synthesized compounds
(100 µg/disc); NA = not applicable; (-) = inactive.

4. Experimental Section
4.1. General Procedure for the Synthesis of Phenyl Hydrazone Derivatives 2a–d

A mixture of substituted acetophenones 1a–d (1 mol), phenyl hydrazine (1 mol), and
acetic acid (1 mL) in ethanol (20 mL) was refluxed for 30 min. After the completion of the
reaction, as monitored via TLC, the reaction mixture was cooled at room temperature. The
product was filtered, washed with water, dried, and recrystallized from ethanol. Physical
data of compound 2a–d is mentioned in Table 3.

Table 3. Physical data of compounds 2a–d.

Compound Color m.p. (◦C) Rf Value/Solvent System
(Hexanes: Ethyl Acetate) Yield (%)

2a Brown 140–143 0.1/6:4 85

2b Pale yellow 132–135 0.15/6:4 80

2c Pale yellow 135–138 0.18/6:4 84

2d Brown 126–129 0.1/6:4 86

4.2. General Procedure for the Synthesis of 1-Phenyl-3-(substituted
-phenyl)-1H-pyrazole-4-carbaldehydes 3a–d

To a well-stirred and cooled (0 ◦C) DMF solution (12 mL), POCl3 (6 mL) was added
dropwise for 1 h. After complete addition of POCl3, the reaction mixture was further stirred
at 0 ◦C for 1 h. To this well-stirred and cooled reaction mixture, a solution of 2a–d (1 mol)
in anhydrous DMF (10 mL) was added dropwise for one hour; after complete addition, the
reaction mixture was heated at 65–70 ◦C for 2 h. The reaction mixture was poured onto
crushed ice and left overnight in a refrigerator, during which time the product separated
out as a solid mass. The product was filtered, washed with Na2CO3 (5%, 30 mL) and water,
and recrystallized from the DMF–ethanol mixture. Physical data of compound 3a–d is
mentioned in Table 4.
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Table 4. Physical data of compounds 3a–d.

Compound Color m.p. (◦C) Rf Value/Solvent System
(Hexanes: Ethyl Acetate) Yield (%)

3a Brown 135–138 0.27/7:3 78

3b Pale yellow 147–150 0.31/7:3 73

3c Pale yellow 137–140 0.2/7:3 75

3d Brown 150–155 0.24/7:3 77

4.3. General Procedure for the Synthesis of 2,4-Disubstitutde Thiazole Derivatives 4a–l
4.3.1. Method A

A mixture of pyrazole aldehyde (1 mmol), thiosemicarbazide (1 mmol), and α-haloketone
(1 mmol) was ground thoroughly with a pestle and mortar at room temperature for
5–10 min. The progress of the reaction was monitored by TLC (ethyl acetate/hexanes
3:7). After completion of the reaction, the mixture was washed with water and recrystal-
lized from ethanol to yield the pure product.

4.3.2. Method B

A mixture of pyrazole aldehyde (1 mmol), thiosemicarbazide (1 mmol), and α-haloketone
(1 mmol) in ethanol was refluxed for 3 h. The reaction mixture was cooled at room temper-
ature and poured onto crushed ice. The separated solid was filtered, washed with ice-cold
water, and purified by column chromatography (Ethyl acetate/hexanes 2:8).

5. Spectral Data

1-((3-(3,5-bis(trifluoromethyl)phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(4-nitrophenyl)
thiazol-2-yl)hydrazine (4a) m.p.: 236–238 ◦C; IR (KBr, cm−1): 3340 (NH), 1545 (C=C), 1620
(C=N); 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH), 9.1 (s, 1H, pyrazolyl-H), 7.68 (s,
1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 7.4–7.8 (m, 5H, Ar-H, Phenyl ring), 8.4 (s, 2H, Ar-H),
8.3 (s, 1H Ar-H), 8.2 (d, J = 7.9 Hz, 2H), 8.3 (d, J = 7.9 Hz, 2H); 13C NMR (75 MHz, CDCl3):
δ 168.1, 150.1, 148.5, 146.4, 140.5, 137.7, 109.1, 116.0, 119.2 (2C), 130.1 (2C), 126.3, 139.5,
126.6 (2C), 131.8 (2C), 130.7, 128.7, 129.5 (2C), [133.5, 133.9, 134.4, 134.8 (q, J = 34.5 Hz, 2C)],
127.8, [124.1, 120.5, 116.8, 113.2 (q, J = 272 Hz, 2C)]; MS (EI, 70 eV): m/z (%): 602 (M+, 100);
Analysis calculated for C27H16F6N6O2S: C, 53.82; H, 2.68; N, 13.95; found: C, 53.43; H, 2.32;
N, 14.15.

1-((3-(3,5-bis(trifluoromethyl)phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(3-nitrophenyl)
thiazol-2-yl)hydrazine (4b) m.p.: 230–235 ◦C; IR (KBr, cm−1): 3350 (NH), 1550 (C=C), 1625
(C=N); 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH), 9.1 (s, 1H, pyrazolyl-H), 7.7 (s,
1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 7.4–7.8 (m, 5H, Ar-H, Phenyl ring), 8.4 (s, 2H, Ar-H),
8.3 (s, 1H Ar-H), 7.7–8.6 (m, 4H, m-NO2 phenyl protons); MS (EI, 70 eV): m/z (%): 602 (M+,
100); Analysis calculated for C27H16F6N6O2S: C, 53.82; H, 2.68; N, 13.95; found: C, 53.55; H,
2.38; N, 14.25.

1-((3-(3,5-bis(trifluoromethyl)phenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-(4-chlorophenyl)
thiazol-2-yl)hydrazine (4c) m.p.: 238–240 ◦C; IR (KBr, cm−1): 3340 (NH), 1545 (C=C), 1620
(C=N); 1H NMR (300 MHz, DMSO-d6): δ 12.0 (bs, 1H, NH), 9 (s, 1H, pyrazolyl-H), 7.7 (s,
1H, thiazolyl-H), 8.3 (s, 1H, CH=N), 7.4–7.8 (m, 5H, Ar-H, Phenyl ring), 8.4 (s, 2H, Ar-H), 8.3
(s, 1H Ar-H), 7.9 (d, J = 8.3 Hz, 2H), 8.2 (d, J = 8.3 Hz, 2H); 13C NMR (75 MHz, DMSO-d6):
δ 168.0, 150.0, 148.4, 146.5, 140.1, 136.0, 109.0, 116.0, 119.3 (2C), 129.0 (2C), 126.4, 139.4,
125.6 (2C), 130.1 (2C), 129.4, 128.7, 129.6 (2C), [133.5, 133.9, 134.4, 134.8 (q, J = 34.5 Hz, 2C)],
128.0, [124.1, 120.5, 116.8, 113.2 (q, J = 272 Hz, 2C)]; MS (EI, 70 eV): m/z (%): 591 (M+, 100);
Analysis calculated for C27H16ClF6N5S: C, 54.78; H, 2.72; N, 11.83; found: C, 54.57; H, 2.48;
N, 12.04.
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1-((3-(4-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(4-nitrophenyl)thiazol-2-yl) hy-
drazine (4d) m.p.: 213–216 ◦C; 1H NMR (300 MHz, DMSO-d6): δ 12.0 (bs, 1H, NH), 9.1 (s, 1H,
pyrazolyl-H), 7.7 (s, 1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 7.4–7.8 (m, 5H, Ar-H, Phenyl ring),
8.2 (d, J = 7.9 Hz, 2H), 7.9 (d, J = 7.9 Hz, 2H), 8.3 (d, J = 8.1 Hz, 2H), 8.1 (d, J = 8.1 Hz, 2H);
13C NMR(75 MHz, DMSO-d6): δ 169.2, 150.0, 149.1, 147.0, 141.4, 138.0, 136.1, 109.4, 118.0,
120.0 (2C), 130.1 (2C), 128.0, 125.5 (2C), 129.0 (2C), 129.1 (2C), 136.0 (2C), 136.5 (2C), 136.2,
125.4 (2C); MS (EI, 70 eV): m/z (%): 511 (M+, 100); Analysis calculated for C25H17N7O4S: C,
58.70; H, 3.35; N, 19.17; found: C, 58.58; H, 4.11; N, 19.63.

1-((3-(4-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(3-nitrophenyl)thiazol-2-yl)
hydrazine (4e) m.p.: 222–225 ◦C; IR (KBr, cm−1): 3350 (NH), 1560 (C=C), 1600 (C=N), 1350,
1540 (NO2); 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH), 9.0 (s, 1H, pyrazolyl-H),
7.5 (s, 1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 7.9–8.4 (m, 4H, m-NO2), 8.4 (d, J = 7.9 Hz, 2H),
8.2 (d, J = 7.9 Hz, 2H), 7.5–7.7 (m, 5H, Ar-H phenyl); MS (EI, 70 eV): m/z (%): 511 (M+, 100);
Analysis calculated for C25H17N7O4S: C, 58.70; H, 3.35; N, 19.17; found: C, 58.35; H, 3.61;
N, 19.52.

1-((3-(4-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(4-chlorophenyl)thiazol-2-yl)
hydrazine (4f) m.p.: 234–239 ◦C; IR (KBr, cm−1): 3300 (NH), 1555 (C=C), 1615 (C=N), 3322,
3022 (Ar-H), 1355, 1550 (NO2), 965; 1H NMR (300 MHz, DMSO-d6) δ 12.0 (bs, 1H, NH), 9.1
(s, 1H, pyrazolyl-H), 7.6 (s, 1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 7.4–7.8 (m, 5H, Ar-H, Phenyl
ring), 7.9 (d, J = 8.2 Hz, 2H), 8.1 (d, J = 8.2 Hz, 2H), 8.3 (d, J = 8 Hz, 2H), 8.2 (d, J = 8 Hz, 2H);
MS (EI, 70 eV): m/z (%): 500 (M+, 100); Analysis calculated for C25H17ClN6O2S: C, 59.94; H,
3.42; N, 16.78; found: C, 60.11; H, 3.62; N, 16.50.

1-((3-(3-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(4-nitrophenyl)thiazol-2-yl)
hydrazine (4g) m.p.: 230–235 ◦C; IR (KBr, cm−1): 3350 (NH), 1550 (C=C), 1620 (C=N), 3315,
(Ar-H), 1330, 1540 (NO2) 950; 1H NMR (300 MHz, DMSO-d6): δ 12.0 (bs, 1H, NH), 9.1 (s,
1H, pyrazolyl-H), 7.4 (s, 1H, thiazolyl-H), 8.3 (s, 1H, CH=N), 7.8–8.3 (m, 4H, m-NO2), 8.2
(d, J = 8.2 Hz, 2H), 8.3 (d, J = 8.2 Hz, 2H), 7.5–7.8 (m, 5H, Ar-H phenyl); MS (EI, 70 eV): m/z
(%): 511 (M+, 100); Analysis calculated for C25H17N7O4S: C, 58.70; H, 3.35; N, 19.17; found:
C, 58.54; H, 3.60; N, 19.01.

1-((3-(3-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-(3-nitrophenyl)thiazol-2- yl)
hydrazine (4h) m.p.: 224–228 ◦C; 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH),
9.1(s, 1H, pyrazolyl-H), 7.3 (s, 1H, thiazolyl-H), 8.2 (s, 1H, CH=N), 7.9–8.6(m, 8H, m-NO2
phenyl rings), 7.4–7.8(m, 5H, Ar-H phenyl); 13C NMR(75 MHz, CDCl3): δ 149.5, 140.7,
118.7(2C), 129.7(2C), 126.4, 135.0, 117.0, 146.3, 168.0, 146.5, 108.8, 133.9(2C), 132.8(2C),
130.4(2C), 120.9(2C), 148.9(2C), 122.4(2C); MS (EI, 70 eV): m/z (%): Analysis calculated for
C25H17N7O4S: C, 58.70; H, 3.35; N, 19.17; found: C, 58.64; H, 3.50; N, 19.08.

1-((3-(3-Nitro-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene]-2-(4-(4-chloro-phenyl)thiazol-2-yl)
hydrazine (4i) m.p.: 220–225 ◦C; IR (KBr, cm−1): 3350 (NH), 1545 (C=C), 1622 (C=N), 3320
(Ar-H), 1345, 1545 (NO2) 950; 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH), 9 (s, 1H,
pyrazolyl-H), 7.5 (s, 1H, thiazolyl-H), 8.6 (s, 1H, CH=N) 7.9–8.3 (m, 4H, m-NO2), 8.0 (d,
J = 8.2 Hz, 2H), 7.9 (d, J = 8.2Hz, 2H), 7.4–7.7 (m, 5H, Ar-H phenyl); 13C NMR (75 MHz,
CDCl3): δ 134.0, 129.5 (2C), 129.0 (2C), 131.1, 149.6, 140.7, 118.8 (2C), 129.7 (2C), 126.4, 135.1,
117.0, 146.3, 168.5, 108.5, 148.6, 134.0, 132.0, 130.5, 121.0, 140.5, 122.5; MS (EI, 70 eV): m/z
(%): 500 (M+, 100); Analysis calculated for C25H17ClN6O2S: C, 59.94; H, 3.42; N, 16.78;
found: C, 60.10; H, 3.12 ; N, 16.45.

1-((3-(4-Bromo-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene]-2-(4-(4-Nitro-phenyl)thiazol-2-yl)
hydrazine (4j) m.p.: 230–233 ◦C; IR (KBr, cm−1): 3355 (NH), 1555 (C=C), 1610 (C=N), 3320,
(Ar-H), 950; 1H NMR (300 MHz, DMSO-d6): δ 12.0 (bs, 1H, NH), 8.9 (s, 1H, pyrazolyl-H),
7.6 (s, 1H, thiazolyl-H), 8.0 (s, 1H, CH=N), 7.8 (d, J = 8.3 Hz, 2H), 8.2 (d, J = 8.3 Hz, 2H),
7.9 (d, J = 8.1 Hz, 2H), 8.3 (d, J = 8.1 Hz, 2H), 7.3–7.6 (m, 5H, Ar-H); 13C NMR (75 MHz,
DMSO-d6): δ 168.6, 150.0, 148, 146.2, 140.7, 138.0, 135.0, 109.1, 117.2, 119.0 (2C), 129.9 (2C),
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126.0, 125.5 (2C), 129.6(2C), 136.4, 128.8, 124.0 (2C), 127.0 (2C), 132.2; MS (EI, 70 eV): m/z
(%): 544 (M+, 100).

1-((3-(4-Bromo-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene]-2-(4-(3-Nitro-phenyl)thiazol-2-yl)
hydrazine (4k) m.p.: 212–215 ◦C; IR (KBr, cm−1): 3350 (NH), 1550 (C=C), 1620 (C=N), 3315,
(Ar-H), 1330, 1540 (NO2) 950; 1H NMR (300 MHz, DMSO-d6): δ 12.1 (bs, 1H, NH), 9.0 (s,
1H, pyrazolyl-H), 7.5 (s, 1H, thiazolyl-H), 8.4 (s, 1H, CH=N), 8.3–8.5 (m, 4H, m-NO2 phenyl
ring), 7.9 (d, J = 8.3 Hz, 2H), 8.1 (d, J = 8.3 Hz, 2H), 7.4–7.6 (m, 5H, Ar-H phenyl); 13C NMR
(75 MHz, CDCl3): δ 122.8, 131.5 (2C), 129.1 (2C), 131.9, 149.4, 140.7, 118.7 (2C), 129.7 (2C),
126.4, 135.0, 117.2, 146.3, 167.9, 108.5, 148.5, 134.0, 132.0, 130.2, 121.1, 139.9, 122.5; MS (EI, 70
eV): m/z (%): 544 (M+, 100); Analysis calculated for C25H17BrN6O2S: C, 55.05; H, 3.14; N,
15.41; found: C, 55.25; H, 3.35; N, 15.15.

1-((3-(4-Bromo-phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene]-2-(4-(4-chloro-phenyl)thiazol-2-yl)
hydrazine (4l) m.p.: 235–237 ◦C; IR (KBr, cm−1): 3350 (NH), 1550 (C=C), 1610 (C=N), 3323,
3021 (Ar-H), 960, 850, 720; 1H NMR (300 MHz, DMSO-d6): δ 12.0 (bs, 1H, NH), 8.9 (s, 1H,
pyrazolyl-H), 7.7 (s, 1H, thiazolyl-H), 8.1 (s, 1H, CH=N), 7.9 (d, J = 8.2 Hz, 2H), 8.1 (d,
J = 8.2 Hz, 2H), 7.7 (d, J = 8.3 Hz, 2H), 8.2 (d, J = 8.3 Hz, 2H), 7.4–7.6 (m, 5H, Ar-H); 13C
NMR (75 MHz, CDCl3): δ 168.5, 149.6, 148.6, 146.3, 140.7, 139.0, 135.1, 108.5, 117.0, 118.8
(2C), 129.7 (2C), 126.4, 125.3 (2C), 131.5 (2C), 130.6, 128.7, 124.2 (2C), 127.1 (2C), 132.0; MS
(EI, 70 eV): m/z (%): 533 (M+,100); Analysis calculated for C25H17BrClN5S: C, 56.14; H, 3.20;
N, 13.09; found: C, 56.54; H, 3.64; N, 12.89.

6. Conclusions

In conclusion, we developed a new series of pyrazole derivatives containing thiazole
heterocyclic rings. The in vitro antimicrobial assay showed that most of the synthesized
compounds showed good activity as compared to standard drugs. From the biological
activity report it can be concluded that pyrazole and thiazole heterocyclic rings play an
important role in determining the biological activity. It was therefore of interest to explore
these azoles for additional modification in order to design new heterocycles for use as
potent drugs.
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