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Abstract: A series of ten 1,5-disubstituted-1H-tetrazoles (1,5-DS-T) were synthesized via Ugi-azide
isocyanide-based multicomponent reactions (IMCR) in low to good yields (30-85%), using propar-
gyl amine or 2-azidobenzaldehyde as a component, and using ultrasound irradiation (USI) as an
alternative energy source. 1,5-DS-T are useful heterocyclic moieties, present in many bioactive
compounds and drugs. Moreover, 1,5-DS-T are used as bidentate ligands, in coordination chem-
istry, metal-organic framework science, bioimaging, photo-imaging, explosives, propellants, and
high-energy materials. The generated products can be used as synthetic platforms for subsequent
post-transformations.

Keywords: 1,5-disubstituted-1H-tetrazoles; isocyanide-based multicomponent reactions; Ugi-azide;
ultrasound irradiation

1. Introduction

MCR are chemical reactions where at least the starting materials react to form a
single product, containing all or most of the atoms of the starting materials. MCRs are
flexible, diversity-oriented, and a one-pot process that can be used to prepare products
with new diversification points [1]. In this context, the isocyanide-based multicomponent
reactions (IMCRs) are the most relevant for the preparation of synthetic platforms [2]. One
type of these is the Ugi-azide reaction, between an aldehyde or ketone; an amine, the
carboxylic acid used in the classical Ugi reaction, is replaced by hydrazoic acid (generated
in situ from NaN3/TMSN3) and an isocyanide to obtain 1,5-disubstituted-1H-tetrazoles
(1,5-DS-T). In the same way, the 1,5-DS-T are privileged heterocycles that are bioisosteres
of the cis-amide bond in peptides, due to their similar physochemical properties in living
systems, mimicking their bioactive conformations, and for this reason they are of great
interest in medicinal chemistry. The most common methodologies for the synthesis of
1,5-DS-T are (i) the [2 + 3] azide—cyanide cycloadition reactions, and (ii) Ugi-azide reaction.
However, the latter allows obtaining highly functionalized products, as well as under
milder conditions [3].

Compounds with alkyne moieties are present in natural products isolated from plants
and marine organisms, and pharmaceuticals as important pharmacophores [4,5]. The
incorporation of a propargyl moiety has important applications in medicinal chemistry
and they are incorporated in drugs such as pargyline 1, selegiline 2, and rasagyline 3 [6,7].
Moreover, this group are used as small-molecule probes to increase the covalent interaction,
detection, and identification of protein targets (4) [8]. On the other hand, organic azides are
not found in nature, to our knowledge; only the antiviral drug Zidovunide 5 incorporates
this group (Figure 1) [9].
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Figure 1. Selected bioactive compounds.

Compounds that incorporate azide or propargyl moieties are useful intermediates in organic
synthesis and can be used as synthetic platforms for subsequent post-transformations [10-13].
In this context, multicomponent reactions (MCRs) are a powerful tool for the synthesis of
compounds that incorporate these functional groups [14,15].

2. Results and Discussion

In recent years, our research group reported the first ultrasound assisted Ugi-azide and
Grobke Blackburn Bienayme IMCRs and demonstrated their role in accelerating the rate of
reaction and decreasing the reaction times, frequently taking place at ambient temperature
and in mild conditions [16-22].

Subsequently, in this research area, in 2017 we reported the first ultrasound-assisted
Ugi-azide under solvent-free using benzaldehydes and anilines [23]. Herein, we describe
the ultrasound-assisted synthesis of 1,5-DS-T that incorporates propargyl (10a—e) or 2-
azidophenyl (11a—e) moieties in yields (30-88%) via a IMCR Ugi-azide-type reaction
(Scheme 1).
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Scheme 1. Previous work and this work.

As depicted in Scheme 2, the 1,5-DS-T containing a propargyl moiety were obtained
in 30-85% yields. Aldehydes of different steroelectronic nature were tested. The best
yields were obtained using benzaldehydes (10a—c). Unfortunately, with 5-chloro-3-methyl-
1-phenyl-1H-pyrazole-4-carbaldehyde and 4-(diphenylamino)benzaldehyde, low yields
were obtained (10d,e) (Scheme 2).
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Figures 2 and 3 show the 'H and '3C NMR spectra of the 1,5-DS-T 10a.
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Figure 2. 'H NMR spectrum of 1,5-DS-T 10a.
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Figure 3. 13C NMR spectrum of 1,5-DS-T 10a.
1,5-DS-T containing an azidophenyl moiety were obtained in 30-85% yields (Scheme 3).

In this case, amines with different steroelectronic natures were tested. The products were
obtained in good yields (77-88%).
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Scheme 3. 1,5-DS-T containing an azidophenyl moiety.

Figures 4 and 5 show the 'H and 13C NMR spectra of the 1,5-DS-Ts 11a.
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Figure 4. 'H NMR spectrum of 1,5-DS-T 11a.
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Figure 5. 13C NMR spectrum of 1,5-DS-T 11a.

As can be seen, the generated products (10a—e and 11a—e) can be used as synthetic
platforms for subsequent post-transformations, due to the different diversification points.

3. Conclusions

A series of ten 1,5-disubstituted-1H tetrazoles in low to good yields were synthesized,
via a one-pot Ugi-azide reaction under ultrasound irradiation at mild conditions. The
products herein described may find applications in various fields, but mainly in medicinal
chemistry, since they contain a tetrazole moiety. It is noteworthy that the Ugi-azide reaction
can be used to prepare products with new diversification points.
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4. Experimental Section
4.1. General Information, Instrumentation, and Chemicals

'H and '¥C NMR spectra were acquired on Bruker Avance III spectrometers (500
or 400 MHz). The solvent used was deuterated chloroform (CDCl3). Chemical shifts
are reported in parts per million (§/ppm). The internal reference for 'H NMR spectra
is trimethylsilane at 0.0 ppm. The internal reference for 3C NMR spectra is CDCl; at
77.0 ppm. Coupling constants are reported in Hertz (J/Hz). Multiplicities of the signals are
reported using the standard abbreviations: singlet (s), doublet (d), triplet (t), quartet (q),
and multiplet (m). NMR spectra were analyzed using the MestreNova software version
10.0.1-14719. IR spectra were acquired on a Perkin Elmer 100 spectrometer using an
attenuated total reflectance (ATR) method with neat compounds. The absorbance peaks
are reported in reciprocal centimeters (Umax/ cm™1). The reaction progress was monitored
by thin-layer chromatography (TLC) on precoated silica-gel 60 Fys4 plates, and the spots
were visualized under UV light at 254 or 365 nm. Mixtures of hexane with ethyl acetate
(EtOAc) were used to run TLC and for measuring retention factors (Ry). Flash column
chromatography was performed using silica gel (230—400 mesh), with mixtures of hexane
with EtOAc in different proportions (v/v) as the mobile phase. All reagents were purchased
from Sigma-Aldrich and were used without further purification. Chemical names and
drawings were obtained using the ChemBioDraw Ultra 13.0.2.3020 software package. The
purity of all the synthesized products (up to 99%) was assessed by NMR.

4.2. Synthesis and Characterization of 1,5-DS-T (10a—e)

General procedure 1 (GP1): In a 10 mL sealed CEM Discover™ microwave reaction
tube containing a solution of the corresponding aldehyde (1.0 equiv.), to MeOH (1.0 M)
were sequentially added propargylamine (1.1 equiv.), TMSNj3 (1.1 equiv.), and fert-butyl
isocyanide isocyanide (1.1 equiv.). The reaction mixture was placed in the water bath of
a sonicator cleaner. Then, the mixture was US-irradiated at room temperature for 3 h.
Then, the solvent was removed to dry under vacuum. The residue was diluted in AcOEt
(5.0 mL) and washed with brine (3 x 15 mL). The organic layer was dried with Na;SOy,
and the solvent was removed to dry under vacuum. The crude product was purified
by flash chromatography using mixtures of hexanes-EtOAc to afford the corresponding
1,5-DS-1H-T Xx-x.

4.2.1. N-((1-(tert-Butyl)-1H-tetrazol-5-yl)(4-chlorophenyl)methyl)prop-2-yn-1-amine (10a)

Based on GP-1, 0.023 g 4-chlorobenzaldehyde (0.164 mmol), 0.012 mL propargylamine
(0.178 mmol), 0.025 mL azidotrimethylsilane (0.178 mmol), and 0.020 mL tert-butyl iso-
cyanide (0.178 mmol) were reacted together in MeOH (0.1 mL) to afford the 1,5-DS-T 10a
(41.0 mg, 83%) as a white gum; Ry = 0.29 (hexanes-AcOEt = 4:1 v/v); "THNMR (500 MHz,
CDCl3, TMS): 6 7.33 (d, ] =8.5 Hz, 2H), 7.29 (d, | = 8.5 Hz, 2H), 5.62 (s, 1H), 3.51-3.33 (m,
2H), 2.50 (s, 1H), 2.31 (t, ] = 2.3 Hz, 1H), 1.65 (s, 9H); 13C NMR (126 MHz, CDCls, TMS): &
154.7,136.5, 134.6, 129.7, 129.2, 80.8, 72.9, 61.6, 55.9, 36.2, 30.1.

4.2.2. N-((1-(tert-Butyl)-1H-tetrazol-5-yl)(4-methoxyphenyl)methyl)prop-2-yn-1-
amine (10b)

Based on GP-1, 0.023 mL 4-methoxybenzaldehyde (0.187 mmol), 0.013 mL propargy-
lamine (0.206 mmol), 0.029 mL azidotrimethylsilane (0.206 mmol), and 0.023 mL tert-butyl
isocyanide (0.206 mmol) were reacted together in MeOH (0.1 mL) to afford the 1,5-DS-T 10b
(42.0 mg, 75%) as a white gum; Ry = 0.27 (hexanes-AcOEt = 4:1 v/v); H NMR (500 MHz,
CDCl3, TMS): 6 7.25 (d, ] = 8.7 Hz, 2H), 6.86 (d, ] = 8.7 Hz, 2H), 5.59 (s, 1H), 3.79 (s, 3H),
3.51-3.32 (m, 2H), 2.47 (s, 1H), 2.29 (t, ] = 2.4 Hz, 1H), 1.67 (s, 9H); 3C NMR (126 MHz,
CDCl3, TMS): 6 159.7,155.1,129.9, 129.6, 114.4, 81.1, 72.6, 61.5, 56.0, 55.3, 36.1, 30.0.



Chem. Proc. 2022, 8, 42

7 of 9

4.2.3. N-((1-(tert-Butyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)prop-2-yn-1-amine (10c)

Based on GP-1, 0.024 g 4-nitrobenzaldehyde (0.155 mmol), 0.011 mL propargylamine
(0.171 mmol), 0.024 mL azidotrimethylsilane (0.171 mmol), and 0.019 mL tert-butyl iso-
cyanide (0.171 mmol) were reacted together in MeOH (0.1 mL) to afford the 1,5-DS-T 10c
(42.0 mg, 85%) as a white gum; R¢ = 0.24 (hexanes-AcOEt = 4:1 v/v); "H NMR (500 MHz,
CDCl3, TMS): 6 8.22 (d, ] = 8.6 Hz, 2H), 7.57 (d, ] = 8.7 Hz, 2H), 5.76 (s, 1H), 3.51-3.32 (m,
2H), 2.59 (s, 1H), 2.34 (t, ] = 2.5 Hz, 1H), 1.71 (s, 9H); 13C NMR (126 MHz, CDClz, TMS): &
154.1,147.9, 145.0, 129.4, 124.2, 80.4, 73.3, 61.8, 55.8, 36.4, 30.1.

4.2.4. N-((1-(tert-Butyl)-1H-tetrazol-5-yl1)(5-chloro-3-methyl-1-phenyl-1H-pyrazol-
4-yl)methyl)prop-2-yn-1-amine (10d)

Based on GP-1, 0.023 g 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde
(0.155 mmol), 0.008 mL propargylamine (0.115 mmol), 0.016 mL azidotrimethylsilane
(0.115 mmol), and 0.013 mL tert-butyl isocyanide (0.115 mmol) were reacted together in
MeOH (0.1 mL) to afford the 1,5-DS-T10d (12.0 mg, 30%) as a white gum; R¢ = 0.24 (hexanes—
AcOEt = 4:1 v/v); TH NMR (500 MHz, CDCls, TMS): § 7.52-7.44 (m, 4H), 7.43-7.38 (m, 1H),
5.67 (s, 1H), 3.62-3.46 (m, 2H), 2.53 (s, 1H), 2.29 (t, ] = 2.5 Hz, 1H), 2.27 (s, 3H), 1.73 (s, 9H);
13C NMR (126 MHz, CDCl;, TMS): § 153.7, 148.9, 137.9, 129.1, 128.4, 126.4, 125.0, 114.0, 80.6,
72.7,61.9,48.2,36.1,29.8,13.5.

4.2.5. 4-((1-(tert-Butyl)-1H-tetrazol-5-yl)(prop-2-yn-1-ylamino)methyl)-N,N-
diphenylaniline (10e)

Based on GP-1, 0.035 g 4-(diphenylamino)benzaldehyde (0.128 mmol), 0.010 mL
propargylamine (0.141 mmol), 0.019 mL azidotrimethylsilane (0.141 mmol), and 0.016 mL
tert-butyl isocyanide (0.141 mmol) were reacted together in MeOH (0.1 mL) to afford the
1,5-DS-T 10e (25.0 mg, 45%) as a white gum; Rf = 0.27 (hexanes—AcOEt = 4:1 v/v); H
NMR (500 MHz, CDCl3, TMS): 6 7.29-7.20 (m, 4H), 7.20-7.13 (m, 2H), 7.08-6.98 (m, 8H),
5.56 (s, 1H), 3.53-3.38 (m, 2H), 2.27 (t, | = 2.3 Hz, 1H),1.69 (s, 9H); 13C NMR (126 MHz,
CDCl3, TMS): & 155.1, 148.1, 147.3, 131.1, 129.3, 129.1, 124.7, 123.3, 123.2, 81.1, 72.6, 61.5,
56.2, 36.3, 30.0.

4.3. Synthesis and Characterization of 1,5-DS-T (11a—e)

General procedure 2 (GP2): In a 10 mL sealed CEM Discover™ microwave reaction
tube containing a solution of 2-azidobenzaldehyde (1.0 equiv.), to a mixture of MeOH:H,O
(1:1 9/9, 0.5 M) were sequentially added the corresponding amine (1.1 equiv.), TMSN3
(1.1 equiv.), and tert-butyl isocyanide (1.1 equiv.). The reaction mixture was placed in the
water bath of a sonicator cleaner. Then, the mixture was US-irradiated at room temperature
for 60 min. Then, the solvent was removed to dry under vacuum. The residue was diluted
in AcOEt (5.0 mL) and washed with brine (3 x 15 mL). The organic layer was dried
with NaySOy, and the solvent was removed to dry under vacuum. The crude product
was purified by flash chromatography using mixtures of hexanes-EtOAc to afford the
corresponding 1,5-DS-1H-T Xx-x.

4.3.1. N-((2-Azidophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)aniline (11a)

Based on GP-2, 0.030 g 2-azidobenzaldehyde (0.204 mmol), 0.020 mL aniline (0.224 mmol),
0.030 mL azidotrimethylsilane (0.224 mmol), and 0.025 mL tert-butyl isocyanide (0.224 mmol)
were reacted together in MeOH (0.2 mL) to afford the 1,5-DS-T 11a (60.0 mg, 85%) as a
white solid; Rf = 0.30 (hexanes—AcOEt = 4:1 v/v); m.p. 197-198 °C; TH NMR (500 MHz,
CDCl3, TMS): 6 7.45 (d, ] =7.8 Hz, 1H), 7.38 (t, ] = 7.8 Hz, 1H), 7.21-7.12 (m, 4H), 6.77 (%,
J =7.7Hz, 1H), 6.40 (d, ] = 9.7 Hz, 1H), 4.55 (d, ] = 9.7 Hz, 1H), 1.75 (s, 9H); *C NMR
(126 MHz, CDCl3, TMS): 6 13C NMR (126 MHz, CDCI3) 4 154.7,145.4, 137.4,129.9, 129.5,
129.1,128.7,125.6,119.4, 118.3, 114.2, 62.0, 48.5, 29.9.
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4.3.2. 1-(2-Azidophenyl)-N-benzyl-1-(1-(tert-butyl)-1H-tetrazol-5-yl)methanamine (11b)

Based on GP-2, 0.030 g 2-azidobenzaldehyde (0.204 mmol), 0.024 mL benzylamine
(0.224 mmol), 0.030 mL azidotrimethylsilane (0.224 mmol), and 0.025 mL tert-butyl iso-
cyanide (0.224 mmol) were reacted together in MeOH (0.2 mL) to afford the 1,5-DS-T 11b
(64.0 mg, 87%) as a white solid; Ry = 0.29 (hexanes-AcOEt = 4:1 v/v); m.p. 109-110 °C;
'H NMR (500 MHz, CDCl3, TMS): & 7.39-7.28 (m, 6H), 7.28-7.24 (m, 1H), 7.20 (d, ] = 7.7 Hz,
1H), 7.11 (t, k =7.7 Hz, 1H), 5.62 (s, 1H), 3.84 (d, ] = 13.0 Hz, 1H), 3.70 (d, ] = 13.0 Hz, 1H),
2.53 (s, 1H), 1.53 (s, 9H); 3C NMR (126 MHz, CDCl3, TMS): § 155.0, 138.7, 137.6, 130.1,
129.7,18.9,128.6, 128.3, 127 .4, 125.6, 118.5, 61.4, 51.7, 51.0, 29.7.

4.3.3. N-((2-Azidophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)cyclohexanamine (11c)

Based on GP-2, 0.030 g 2-azidobenzaldehyde (0.204 mmol), 0.026 mL cyclohexanamine
(0.224 mmol), 0.030 mL azidotrimethylsilane (0.224 mmol), and 0.025 mL tert-butyl iso-
cyanide (0.224 mmol) were reacted together in MeOH (0.2 mL) to afford the 1,5-DS-T
11¢(59.0 mg, 81%) as a white solid; R¢ = 0.35 (hexanes—AcOEt = 4:1 v/v); m.p. 162-163 °C;
H NMR (500 MHz, CDCl3, TMS): § 7.34 (t, ] = 7.5 Hz, 1H), 7.26 (d, ] = 7.8 Hz, 1H), 7.20 (d,
J=7.8Hz, 1H), 7.09 (t, ] = 7.5 Hz, 1H), 5.80 (s, 1H), 2.41-2.15 (m, 2H), 1.97-1.90 (m, 1H),
1.90-1.82 (m, 1H), 1.78-1.67 (m, 2H), 1.66 (s, 9H), 1.61-1.53 (m, 1H), 1.25-1.07 (m, 5H); 13C
NMR (126 MHz, CDCl3, TMS): 6 155.8, 137.2, 130.5, 129.5, 128.9, 125.5, 118.5, 61.3, 54.8, 48.9,
33.3,33.0,29.8,25.9,24.8,24.7.

4.3.4. N-((2-Azidophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)prop-2-en-1-amine (11d)

Based on GP-2, 0.030 g 2-azidobenzaldehyde (0.204 mmol), 0.017 mL allylamine
(0.224 mmol), 0.030 mL azidotrimethylsilane (0.224 mmol), and 0.025 mL tert-butyl iso-
cyanide (0.224 mmol) were reacted together in MeOH (0.2 mL) to afford the 1,5-DS-T 11d
(56.0 mg, 88%) as a white gum; Ry = 0.28 (hexanes—AcOEt = 4:1 v/v); 'H NMR (500 MHz,
CDCl3, TMS): 6 7.40-7.31 (m, 1H), 7.26-7.16 (m, 2H), 7.10 (t, ] = 7.6 Hz, 1H), 5.99-5.87 (m,
1H), 5.67 (s, 1H), 5.19-5.11 (m, 2H), 3.32 (dd, ] = 13.8, 5.5 Hz, 1H), 3.17 (dd, | = 13.8, 6.8 Hz,
1H), 2.35 (s, 1H), 1.63 (s, 9H).; 13C NMR (126 MHz, CDCls, TMS): & 155.0, 137.4, 135.9, 130.1,
129.7,128.8,125.5,118.5, 117.2, 61.4, 51.1, 50.6, 29.8.

4.3.5. N-((2-Azidophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)-2-(1H-indol-3-yl)
ethan-1-amine (11e)

Based on GP-2, 0.030 g 2-azidobenzaldehyde (0.204 mmol), 0.034 g tryptamine
(0.224 mmol), 0.030 mL azidotrimethylsilane (0.224 mmol), and 0.025 mL tert-butyl iso-
cyanide (0.224 mmol) were reacted together in MeOH (0.2 mL) to afford the 1,5-DS-T 11e
(43.0 mg, 77%) as a white gum; Ry = 0.20 (hexanes-AcOEt = 4:1 v/v); '"H NMR (500 MHz,
CDCl3, TMS): 6 8.12 (s, 1H), 7.50 (d, ] = 7.9 Hz, 1H), 7.36-7.28 (m, 3H), 7.21-7.13 (m, 5H),
7.09-6.99 (m, 3H), 5.67 (s, 1H), 2.98 (t, | = 6.5 Hz, 2H), 2.94-2.90 (m, 2H), 1.62 (s, 8H).; 1*C
NMR (126 MHz, CDCl3, TMS): 4 13C NMR (126 MHz, CDCI3) 6 155.3, 137.4, 136.4, 129.9,
129.6,128.8, 127.3,125.5,122.0,119.2, 118.8, 118.3,113.4, 111.2, 61.5, 52.3, 48.1, 29.8, 25.9.
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