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In 1995, Noyori and co-workers made a breakthrough with their design of practi-
cal ruthenium-based catalysts, which combined the homochiral TsDPEN ligand with a
Ru(II) arene [1,2]. Using (R,R)-1 at a loading of 0.5 mol% in either KOH-iPrOH or the
azeotropic mixture of formic acid–triethylamine (FA:TEA, 5:2 molar ratio), the reduction of
acetophenone was achieved in up to 98% ee (Figure 1).
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Figure 1. Asymmetric Transfer Hydrogenation (ATH) with Noyori–Ikariya catalysts.

The mechanism for the asymmetric transfer hydrogenation (ATH) with Noyori–Ikariya
catalysts is now well-established (Figure 2) [3–9]. The precatalyst can be activated by
elimination of HCl to form a 16-electron neutral Ru(II) complex. Then, the 16-electron
complex abstracts two hydrogen atoms from the hydrogen donor, such as isopropanol, a
formic acid/triethylamine (FA/TEA) mixture or sodium formate, to form a hydride that
contains an 18-electron Ru(II) centre. Finally, the two hydrogen atoms are transferred to
the C=O group and reduce ketone substrates into chiral alcohol products. Meanwhile,
the 16-electron neutral Ru(II) complex is regenerated and can restart the catalytic cycle.
The six-membered transition state can be stabilized by the combination of electrostatic
interactions and steric effects. Edge/face (or CH/π) electrostatic interaction makes the
electron-rich aryl group of a substrate favour the position adjacent to the η6-arene ring of
the catalyst (Figure 3), whereas the large group and electron group favour the position
distal to η6-arene ring (Figure 4).
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Figure 2. Mechanism of hydrogen transfer with Noyori–Ikariya catalysts. 
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lene > hexamethylbenzene. 
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Noyori [(arene)Ru(TsDPEN)Cl] catalysts with different arene rings are shown below
(Figure 5) [2]. The reactivity of Noyori-type catalysts in ATH reactions is changed when the
arene ligand is different, activity following the order benzene > p-cymene ≈ mesitylene >
hexamethylbenzene.
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A new class of “tethered” ruthenium (II) catalyst was introduced by Wills et al.
(Figure 6) [10–12]. In some cases, these exhibit improved activity over the non-tethered
versions, which allows a reduction of catalyst loading and reaction times.
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Figure 6. Tethered catalysts introduced by Wills et al.

ATH of some benzophenone derivatives [9,13,14] and heterocyclic ketones [15–17]
has been reported. The electronic differences between two phenyl rings caused by the
electron-donating p-OMe group and electron-withdrawing p-CN group make the p-OMe
substituted phenyl ring adopt the position proximal to the η6-arene. Out-of-plane aromatic
rings with one or two ortho-substituent groups favour positioning distal to η6-arene and
result in the formation of alcohol products with very high ees (Figure 7).
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We have studied ATH of ortho-hydroxyphenyl acetophenone derivatives with four
different tethered catalysts (Figure 8) [18]. (R,R)-3C-tethered catalyst 2 was found to be the
most active of the series tested initially with ortho-hydroxybenzophenone.
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The configuration of alcohol product 5 was confirmed after methylation by comparison
of the HPLC of reduction product 6, the configuration of which is known in the literature
(Figure 9).
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Figure 9. Determination of product configuration in ATH of ortho-hydroxy benzophenones.

We also completed the ATH of a range of ortho-hydroxyphenyl acetophenone deriva-
tives using four catalysts and found that most of them can provide products in good
yield and high ee (Figure 10). The electron-rich ortho-hydroxyphenyl group can generate
an electrostatic interaction with an η6-arene ring in the complex, whereas the hindered
opposing aromatic ring can be in a position that is far from the η6-arene ring (Figure 11).
Therefore, the combination of the ortho-OH directing group and steric effect provide prod-
ucts with high ees. The application could also be extended to a series of amide-containing
benzophenones (Figure 12).
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Figure 12. ATH of benzophenones containing amides.

In addition to ketones, imines containing ortho-OH groups were also studied. How-
ever, the hydrolysis of imines is more likely to occur when using FA: TEA (5:2) as the
hydrogen source. Thus, the unique condition of ATH of imines with catalyst (R,R)-2 is
using ammonium formate in DCM at 70 ◦C in sealed tubes under a nitrogen atmosphere
and with only 0.5 mol% catalyst applied [19]. Following the earlier precedents (Figure 13),
ATH of imines also delivered products of good ees (Figure 14).

Chem. Proc. 2022, 8, 35 6 of 10 
 

 

 

 

Figure 12. ATH of benzophenones containing amides. 

In addition to ketones, imines containing ortho-OH groups were also studied. How-

ever, the hydrolysis of imines is more likely to occur when using FA: TEA (5:2) as the 

hydrogen source. Thus, the unique condition of ATH of imines with catalyst (R,R)-2 is 

using ammonium formate in DCM at 70 °C in sealed tubes under a nitrogen atmosphere 

and with only 0.5 mol% catalyst applied [19]. Following the earlier precedents (Figure 13), 

ATH of imines also delivered products of good ees (Figure 14). 

 

Figure 13. A reported imine ATH using a tethered catalyst. Figure 13. A reported imine ATH using a tethered catalyst.



Chem. Proc. 2022, 8, 35 7 of 11Chem. Proc. 2022, 8, 35 7 of 10 
 

 

 

Figure 14. ATH of imines using a tethered catalyst. 

The reductions have several potential applications. The ortho-hydroxy directing effect 

can be applied to synthesize highly enantioselective compounds, which cannot be made 

in high ee by direct ATH. In addition, there is also potential to synthesize pharmaceuti-

cally valuable targets such as a sphingosine 1-phosphate receptor inhibitor precursor with 

high enantioselectivity by using a Suzuki coupling reaction (Figure 15). 

 

Figure 15. Functionalizations of the ATH products. 

ATH of aryl heteroaryl ketones using Noyori–Ikariya catalysts has also been studied 

(Figure 16) [20]. Four catalysts have been tested for reducing most of the substrates. 

 

Figure 16. ATH of hetereocyclic/aromatic ketones—reported examples. 

Ketones where Ar = Ph, o-(MeO)C6H4 (oOMe), o-(Me)C6H4 (oMe), o-(Br)C6H4 (oBr), o-

(Br)C6H4 (oCl) and α-naphthyl (Np) versus Het = 2-furyl (Fu), 2-thienyl (Thio), 2-N-me-

thylimidazole (Im) and 2-N-methylpyrrole (PyMe) were studied. The results indicated 

that the electron-rich heterocyclic rings are more competitive and adjacent to the η6-arene 

ring in transition state (Figure 17). 

Figure 14. ATH of imines using a tethered catalyst.

The reductions have several potential applications. The ortho-hydroxy directing effect
can be applied to synthesize highly enantioselective compounds, which cannot be made in
high ee by direct ATH. In addition, there is also potential to synthesize pharmaceutically
valuable targets such as a sphingosine 1-phosphate receptor inhibitor precursor with high
enantioselectivity by using a Suzuki coupling reaction (Figure 15).
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ATH of aryl heteroaryl ketones using Noyori–Ikariya catalysts has also been studied
(Figure 16) [20]. Four catalysts have been tested for reducing most of the substrates.
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Figure 16. ATH of hetereocyclic/aromatic ketones—reported examples.

Ketones where Ar = Ph, o-(MeO)C6H4 (oOMe), o-(Me)C6H4 (oMe), o-(Br)C6H4 (oBr),
o-(Br)C6H4 (oCl) and α-naphthyl (Np) versus Het = 2-furyl (Fu), 2-thienyl (Thio), 2-N-
methylimidazole (Im) and 2-N-methylpyrrole (PyMe) were studied. The results indicated
that the electron-rich heterocyclic rings are more competitive and adjacent to the η6-arene
ring in transition state (Figure 17).
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Figure 17. ATH of aromatic/heterocyclic ketones in this product.

For the N-methylimidazole-containing ketones, the pattern becomes a little bit com-
plex (Figure 18). The X-ray crystallographic structure of 7 showed it is in R configuration
after ATH with catalyst (R,R)-2 and the naphthyl ring is out of plane. However, The X-ray
crystallographic structure of 8 illustrated the product is in S configuration, which is also
confirmed by methylation and comparison with the HPLC of alcohol 9. Therefore, we pro-
posed transition states for these two substrates (Figure 18). The N-methyl imidazole is likely
to be protonated under the mildly acidic reaction conditions, so the ortho-methoxyphenyl
group could be adjacent to the η6-arene ring as it is more electron-rich. However, the bulky
naphthyl ring has more steric effect and favours positioning distal to η6-arene ring. In
addition to compounds 7 and 8, we also studied other substrates with N-methylimidazole
group and some of them can provide reasonable results although some were resistant to
ATH (Figure 19).
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In conclusion,

• (R,R)-3C-tethered catalyst 2 was found to be the most active catalyst for ATH of a
series of ortho-hydroxy benzophenone and aromatic/heterocyclic ketones.

• The enantioselectivity can be influenced by a combination of steric and electronic
factors.

• The directing effect of the o-OH group in hindered ketones and imines can provide
products with high enantioselectivity.

• The reduction enantioselectivity of a range of ketones flanked by a combination of an
aromatic and a heterocyclic ring (furan, thiophene, N-methylimidazole) was high (up
to 99% ee) in cases where the aromatic ring contained an ortho-substituent.
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