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Abstract: A novel synthetic method has been developed by utilizing the chemical reactivity of
functionalized graphene and CNT with a covalent combination of chemically diverse GO/FCNT
and toluene diisocyanate, thereby yielding a synergistic polymer nanocomposite. Comprehensive
composite material has simultaneous covalent, as well as π-π, interactions confirming sp2-hybridized
frameworks of graphene oxide and MWCNTs by Raman absorption spectra at 1345 and 1590 cm−1 of
D and G bands, respectively. Toluene diisocyanate and GO/FCNT inspired polymeric formulation
was obtained by the classical curing reaction initiated by ultrasound sonication. This method allowed
50 wt.% doping of GO/FCNT without segregation and ensured good adhesion to the law steel surface.
The large surface area and morphological character of GO and FCNT by SEM and TEM ensure stable
and dispersed integrated molecules. This has advantages over high-temperature and hazardous
curing reaction, and overcomes the problem of graphene exfoliation. It also does not allow CNT
slipping within the bundle, which can cause falling apart at higher concentration.

Keywords: graphene; CNT; isocyanate; curing; filler; nanostructured

1. Introduction

Complimentary properties of organic and inorganic materials are combined to gener-
ate a new composite material, generating new hybrid composite materials. The new hybrid
composite material has combined properties of both organic and inorganic compounds [1].
Before compositing two chemically distinct species, synergy was installed by functionali-
sation of an essential component [2]. Functionalisation permits chemical response, which
improves mechanical, thermal, electrical, UV resistance, and abrasion properties in hybrid
organic-inorganic materials [3,4]. In polymer nano-composite, lack of covalent interac-
tions allows exfoliation of filler material into the complex matrix. This problem is further
overcome by chemical functionalisation and the subsequent covalent combination of nanos-
tructure filler into the polymeric matrix [5]. The isocyanate is a functional species ready
to be combined with chemically modified filler material, thereby enhancing the intrinsic
properties of the final composite material for application. Consequently, the final composite
material has reduced hydrophilic properties, due to the utilization of hydroxyl and acid
functionality of the filler, and forms new hydrophobic amide and carbamate ester linkages.
As a result of this, it is no longer exfoliated into the solvent, helping in the stably dispersed
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constructive formulation. Segregation has been observed at very low concentration of
0.1 vol% of graphene as filler in polystyrene. It was evidenced that there is no constructive
attraction between filler and polymer. Physical laying of filler into the polymer matrix
immediately segregates at high concentration [6,7].

Owing to the strong and inbuilt sustainable properties of CNT it is able to retain
five to ten times more load than steel. Compared to steel, CNT inclusion creates magical
properties due to the active large surface, 1/6 weight, 50–100 G Pa tensile strength and
1–2 T Pa modulus [8–11]. Next generation performing materials have multifunctionality
due to CNT and graphene, with unique mechanical, thermal, and surface properties. CNT
and graphene polymer nanocomposite coating binds synergy of film thickness, interparticle
spacing of the filler and thermomechanical properties [12]. Further 2 wt.% SWNTs added to
the coating results in 125% thermal conductivity and 3.5-factor increase in Vickers hardness.
To date, the use of CNTs and graphene nanocomposites has been limited by challenges
in processing, dispersion, and their prohibitively high cost. Ajayan et al. demonstrated
the preparation of epoxy composite by dispersing multiwall nanotubes in the epoxy under
ultrasonic force [13]. Higher concentrations of more than 5% nanotubes in composite
slip within the bundle and fall apart, which is responsible for poor load transfer within
the cured composite. This was supported by Raman spectra, tension and compression
analysis [14]. Sandler et al. tried to improve dispersion of SWNTs by ultrasonic application
and intense stirring. A slight improvement was observed in the configuration of nanotubes
but it still failed on the millimeter scale [15]. Irrespective of the sliding of the SWNTs,
into the ropes, continuous increase in Young’s modulus was observed with respect to
increasing concentration. Improper configuration slides SWNTs into the rope, and bending
of the rope decreases mechanical strength [16]. Furthermore, surfactants were also used to
improve the dispersion of nanotubes in epoxy. This retained the mechanical strength of
the composition [17]. Surfactant and ultrasonically dispersed epoxy-nanotube composition
appear to be finely dispersed, but microscopic. Analysis found there to be inhomogeneous
dispersion in the composition [18]. To overcome this, an integrated system was developed
upon functionalization of GO/FCNT, and exploited to induce curing of diisocyanate. The
composite was used as a corrosion resistive coating on low alloy steel [19,20]. Loading
of 50 wt.% filler achieved stable, mechanically strong and highly dispersed FCNT/GO
isocyanate composite for surface coating [21,22].

2. Experimental
2.1. Materials and Methods

Single-walled carbon nano tubes were purchased from Alfa Aesar. Graphene and
toluene diisocyanate precursor were purchased from Sigma Aldrich. Anhydrous THF
was used as a solvent in this process and functionalization was done by using NaNO3,
KMnO4, and H2SO4 in deionized water. Low alloy steel for coating was used from a local
supplier in Mumbai, India. Functionalization of CNT and Graphene was performed by the
Hummer’s method [23]. Further composites were prepared and obtained fine dispersion.
Surface coating of nano-composite on low-alloy steel was performed by a simple bar coating
method. Formulations containing 50, 25, 10, 5 wt.% of filler content of average precision
film thickness were obtained.

2.2. Characterization of Structure and Surface Morphology

IRRA (infrared reflection absorption) spectra were utilized for the characterisation
of functional modification in CNT and graphene. IRRA was carried out by a Perkin
Elmer 100 FT-IR spectrophotometer with Olympus BX51 microscope attachment. Raman
spectroscopy was performed by Horiba Jobin Yvon Labram HR system with 514.5 nm laser
excitation. The surface morphology of composites was investigated by scanning electron
microscopy (SEM) on a Hitachi SU-70 instruments, operated at accelerating voltage of 20 kV.
Transmission electron microscopy (TEM) was used for dispersion study of the composite
by a JEOL-2010 instrument operated at 200 kV and 100 mA equipment. Film thickness was
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measured by shin equipment, Mumbai. The rate of corrosion was detected by deep method
in 3.5% NaCl solution for 2160 h.

3. Results and Discussion
3.1. Functionalisation, Dispersion of FCNT/GO and Curing of Isocyanate

The overall strategy shown in Figure 1 depicts dispersion of active carbon material
in isocyanate. The accessible functional groups on the surface of carbon material induce
cross-linking to di-isocyanate. Initial reports on a high degree of functionalisation, followed
by fluorination, were employed to obtain large dispersion and mechanical strength in epoxy
nanocomposite [24]. Thereby acid and fluorine covalently bind with active epoxy. An acid
functional group readily forms ester while diamine becomes an active spacer and readily
replaces side wall fluorine [24,25]. Here toluene di-isocyanate was employed as an active
crosslinking bifunctional spacer between two nano-materials. The induced cross-linking
was materialised by excessive probe sonication. The overall challenge of nano particle
segregation and constant dispersion in a solvent was overcome by reactive sites, both on
the nanomaterial and the diisocyanate precursor.
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Figure 1. Schematic of graphene CNT functionalization, composite formation with toluene diisocyanate.

Structural changes in the composite were noted and analyzed by characteristic IRRA
peaks. GO@isocyanate showed a specific broad absorption peak at 3407 cm−1 (Figure 2b).
While CNT@isocyanate showed relatively small absorbance in the same region (Figure 2a).
Separate peaks at 3298 cm−1 and 3528 cm−1 arose in toluene diisocyanate and confirmed a
urethane link N=C (Figure 2a). Broad absorbance at 3400 cm−1 was absent completely in
the pure toluene di-isocyanate. In pure toluene di-isocyanate, C-H stretching absorption
spectra were observed at 2987 cm−1 and further strongly recognised in both composites
of GO/FCNT@isocyanate, due to the influence of non-stacking with the surface, and
non-hydrogen bonding. Sharp absorption bands were observed in the fingerprint re-
gion, whereas, for pure toluene di-isocyanate, a bundle of peaks was observed in this
region. Peaks were commonly observed at close to 1377 cm−1 in all spectra, explaining
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the –CH3 group of toluene diisocyanate carried forward in composite formation. The
aromatic nature of toluene diisocyanate compound was confirmed by absorption peaks at
1170 cm−1 and 1534 cm−1. The IR absorption spectra at 1130 cm−1 for GO@isocyanate, and
1164 cm−1 for FCNT@isocyanate, corresponded to the C-C-O ether linkage. Absorption
at 934 cm−1 for the GO@isocyanate and 927 cm−1 for FCNT@isocyanateis C-H stretch
vibrations of methylene were attributed to at least one aliphatic fragment or center. The
broad peak at 2291 cm−1 was observed for the toluene diisocyanate, which is a specific
isocyanate bond confirmation further, which completely vanished in both GO@isocyanate
and FCNT@isocyanate composites. It confirmed that the purpose of curing the isocyanate
by nano-imbedded particles, like FCNT and GO, was successfully achieved. Significant
change was observed in the IRRA absorption spectra of the surface, incorporated with
active functional nanoparticles and only isocyanate as such.
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Figure 2. IRRA spectra (a) toluene di-isocyanate without doping on steel surface (b) GO@isocyanate
50 wt.% (c) FCNT@isocyanate 50 wt.%.

3.2. Interface Chemistry between GO/FCNT@isocyanatematrix

Kozlowski and Jones et al. suggested synergy in a two phasic system was due to
interfacial physical π-π and covalent chemical compatibility [26,27]. The interfaces of
GO/FCNT become more compatible by simultaneously strong covalent and π-π interaction
with the diisocyanate host. Few covalently unbounded GO/FCNT interfaces have strong
π-π interaction and remain dispersed without agglomeration (Figure 1). In situ reaction
helps in non-agglomeration and phase separation of the polymer and GO/FCNT. Hydroxyl
and carboxylic acid functional groups grafted onto the GO/FCNT provide a way for in situ
chemical integration of the GO/FCNT into the isocyanate system.

As mentioned previously, simultaneously strong covalent and π-π interactions are
involved in facilitating the interfaces between the nanostructured filler and isocyanate
matrix. Electron microscopy further corroborated fine dispersion of the nanostructure
carbonaceous material in the isocyanate. The properly dispersed GO and MWCNTs over
isocyanate in the coating is shown by SEM images in Figure 3 on low-alloy steel. The sample
was cryo-fractured in liquid nitrogen and a cross section SEM image was captured, which
indicates well dispersed oxidised MWCNTs and GO. There was no clue for the segregation
of MWCNTs and GO in SEM. Hemispherical caps of the MWCNTs were observed. The
evidence of covering of the polymeric matrix to nanomaterial was also observed in SEM.
Figure 3a depicts MWCNT@isocyanate, while GO@Isocyanate is shown in Figure 3a. The
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swelling of the polymeric matrix observed with nanomaterials and a rough surface were
observed in the coating. Similarly, Figure 3d shows graphene oxide sheets embedded
within the isocyanate matrix. The carbon nanomaterial on isocyanate was evaluated
with TEM images. Figure 4a,b show complete dispersion of the separated GO sheet and
oxidised nanotubes in isocyanate. In Figure 4b’s TEM of high resolution, complete covering
was observed i.e., wrapping of the polymeric matrix to the MWCNTs, indicating similar
observation of graphene oxide wrapping in isocyanate matrix (Figure 4c). Despite extensive
functionalisation, the crystalline order of some graphene oxide was preserved, shown in
Figure 4d in selected area electron diffraction pattern. The sp2-hybridized frameworks of
graphene oxide and MWCNTs were confirmed by absorption in Raman spectra at 1345 and
1590 cm−1 of D and G bands, respectively (Figure 5). It was noted that the positions of the
D and G bands are finely disturbed while compositing with the isocyanate matrix. The
intensity of the D and G bands are much more affected before and after compositing. In the
isocyanate matrix, the intensity of the G band was slightly declined rather than in MWNTs
alone. Further the D band becomes comparably intensive with the G band for graphene
oxide in isocyanate, and comparable increase in intensity of the G band for MWCNTs
was observed. As expected, after functionalisation, intensity of the 2D band no significant
change in the MWCNTs was observed, due to the disruption of p-conjugation arising from
the double bond resonance process, which was no more promising for graphene oxide. The
compatibility of nanostructure filler and host matrix was due to the dual modality of the
covalent bond and π-π interactions, illustrated in Figures 1, 3 and 5. There are other ways
to have compatibility in nanostructure filler and a polymeric matrix. To the best of our
knowledge, and with reference to literature, this is the sole example for coating application
using graphene oxide and oxidised MWCNTs as curing agents.
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3.3. Corrosion Inhibition Endowed by Nanocomposite Coatings

The digital photograph in Figure 6 depicts exposer of 50, 25, 10, and 5 wt.% GO/
FCNT@isocyanate in 3.5% NaCl solution for 2160 h. Strong resistance to corrosion was
observed at higher loading, i.e., 25 and 50 wt.%, while at 5 and 10 wt.% significant corrosion
was observed after long exposer to salt solution.
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3.4. Mechanical Properties

Mechanical properties of isocyanate composites have been tested for impact resis-
tance, pencil hardness, scratch hardness, adhesion, cracking resistance and flexibility. The
results are summarized in Table 1. It shows good resistance to cracking (flexibility). The
pencil hardness is 5H for all the coating, except 5 wt.% GO/FCNT@isocyanate. Simi-
larly, adhesion of coating was fairly good at meeting the standards. Adhesion of 5 wt.%
GO/FCNT@isocyanate was 4B, while the rest of the coating samples had 5B. Further, all
the samples were found to have good resistance over scratch hardness. The average scratch
hardness was 2.9 Kg.

Table 1. Mechanical properties of polymer films with various %wt of GO/FCNT@isocyanate.

%Weight of GO/FCNT@isocyanate

GO@isocyanateFCNT@isocyanate

5 10 25 50 5 10 25 50
Impact Resistance Pass Pass Pass Pass Pass Pass Pass Pass

Pencil hardness 4H 5H 5H 5H 5H 5H 5H 5H
Flexibility Pass Pass Pass Pass Pass Pass Pass Pass
Adhesion 3B 5B 5B 5B 5B 5B 5B 5B

Scratch Hardness (Kg) 2.8 2.9 3.0 3.0 2.8 2.9 2.9 3.0

4. Conclusions

The concept of a chemical reaction between two phase materials GO/FCNT with
isocyanate was executed and utilized as a corrosion resistive coating material. Chemically
activated carbonaceous nanomaterial was integrated into the core structure of the polymer
matrix, united by covalent, as well as π-π, chemical combination. It allows loading about
50 wt.% of nanofiller into polymer matrix to deliver better surface and mechanical proper-
ties. The general problem at high loading of graphene exfoliation and sleeping of nanotubes
was overcome by the covalent bonding approach and formed a stable dispersion.

Author Contributions: V.P. is contributed for conceptualization, L.J. for experimental part, R.P. and
N.B. for methodology, G.D.Y. and S.M. for supervision and D.B.P. for original draft preparation. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Experimental part does not involve human or animal study.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not applicable.
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