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Abstract: In the development of earlier-initiated studies on the synthesis of natural and synthetic
neuritogenic alkynols, lembehynes A–C—which simultaneously exhibit high antitumor activity—we
developed a method for the synthesis of an analogue of natural lembehyne B containing a phenyl
radical in its structure. It is shown that the synthesized aromatic analogue of lembehyne B exhibits
higher antitumor activity in vitro than a number of tumor cell lines (Jurkat, K562 and U937).
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1. Introduction

Lembehynes are a unique class of natural compound that exhibit a wide range of
biological activities and have neuritogenic, antitumor and antibacterial properties [1–10].

Earlier, we reported on the complete synthesis of natural lembehyne B, as well as the
preparation of synthetic derivatives of lembehyne B containing a 1,3-diyne fragment in
their structure. The synthesized lembehynes showed cytotoxicity toward tumor cells of
the Jurkat, U937, K562, HeLa and Hek293 lines and neuritogenic activity toward Neuro 2A
mouse neuroblastoma cells [11,12].

It is known that the π–π stacking interaction of aromatic radicals, which are biologically
active compounds with nitrogenous bases of the DNA or RNA of tumor cells, can lead to
disruption of the processes of transcription and replication, leading to apoptosis [13,14].

Based on the results obtained earlier, we have synthesized a number of aromatic
derivatives of lembehyne B using terminal allenes at the key stage of the catalytic cross-
cyclomagnesiation reaction (Dzhemilev reaction) [14–25].

2. Results and Discussion

Cross-cyclomagnesiation reactions of 1,2-dienes containing aromatic radicals 2(a–c)
and tetrahydropyran esters of 13,14-pentadecadienol 3 using EtMgBr in the presence of
metallic Mg and a Cp2TiCl2 catalyst (10 mol%), through the stage of formation of mag-
nesacyclopentanes 4(a–c), the hydrolysis of which gave tetrahydropyran ethers 13Z,17Z-
dienes 5(a–c) in 79–82% yields. Successive reactions of the removal of tetrahydropyranyl
protection and the oxidation of unsaturated alcohols 6(a–c) using Dess–Martin periodinane
led to 13Z,17Z-diene aldehydes 7(a–c) in ~78–82% yields. As a result of the reaction of
pre-synthesized lithium (trimethylsilyl)acetylenide with aldehydes 7(a–c) and the removal
of the trimethylsilyl protection with TBAF, racemic lembehyne B 1(a–c) derivatives were
formed in ~80–84% yields (Scheme 1).
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Scheme 1. Synthesis of aromatic derivatives of lembehyne B. 

For the synthesized compounds, the in vitro antitumor activity was assessed on 
Jurkat, K562, HL-60, and U937 cell lines and fibroblasts, including the determination of 
IC50 using flow cytometry and multiplex analysis. 

3. Conclusions 
An effective method was developed for the preparation of aromatic derivatives of 

lembehyne B, using, at the key stage of synthesis, the reaction of catalytic cross-cyclomag-
nesiation of terminal 1,2-dienes (Dzhemilev reaction). Moreover, their antitumor activity 
was also studied using the modern methods of flow cytometry and multiplex analysis.  

4. Experimental Part 
Commercially available reagents (Sigma-Aldrich and Acros) were used. Reactions 

with organomagnesium compounds were carried out under a dried argon atmosphere. 
1,2-dienes were prepared according to the known procedure. Reaction products were an-
alyzed on a Carlo Erba chromatograph (a Hewlett Packard Ultra-1 glass capillary column, 
25 m × 0.2 mm, flame ionization detector, operating temperature 50–170 °C, carrier gas 
helium). TLC was performed on Silufol UV-254 plates. The elemental composition of com-
pounds was determined using a Carlo Erba-1106 instrument. Mass spectra were obtained 
using a Bruker MALDI-TOF/TOF Autoflex III instrument. The 1H and 13C NMR spectra 
were recorded on a Bruker Avance 400 spectrometer (100.62 MHz for 13C, and 400.13 
MHz for 1H).  

Cross-cyclomagnesiation of 1,2-diene (2(a–c)) and 2-(pentadeca-13,14-dien-1-yloxy)tetrahydro-
2H-pyran (3) with EtMgBr in the presence of Mg metal and Сp2TiCl2 catalyst was carried out, 
according known procedure [11]. 2-(((13Z,17Z)-19-phenylnonadeca-13,17-dien-1-
yl)oxy)tetrahydro-2H-pyran (5a). Yield, 79%; Rf = 0.45; 1H NMR (400 MHz, CDCl3) δ: 1.34‒
1.93 (28H, m, CH2), 2.03‒2.29 (8H, m, CH2), 3.40‒3.96 (4H, m, CH2-О), 4.64 (1H, t, J = 6 Hz, 
CH-О), 5.42‒5.68 (2H, m, CH=), 7.21‒7.44 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: 
19.71, 25.63, 26.26, 27.36, 27.40, 27.53, 29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76, 125.85, 
128.36, 128.39, 128.49, 128.94, 130.26, 130.60, 141.08; MS (MALDI-TOF), m/z: 440 [M]+; 
C30H48O2; found (%): C, 81.61; H, 10.89; calc. for C30H48O2 (%): C, 81.76; H, 10.97. 2-
(((13Z,17Z)-20-phenylicosa-13,17-dien-1-yl)oxy)tetrahydro-2H-pyran (5b). Yield, 78%; Rf = 
0.44; 1H NMR (400 MHz, CDCl3) δ: 1.30‒1.91 (30H, m, CH2), 2.00‒2.29 (8H, m, CH2), 3.41‒
3.96 (4H, m, CH2-О), 4.63 (1H, t, J = 6 Hz, CH-О), 5.42‒5.68 (2H, m, CH=), 7.21‒7.45 (5H, 

Scheme 1. Synthesis of aromatic derivatives of lembehyne B.

For the synthesized compounds, the in vitro antitumor activity was assessed on Jurkat,
K562, HL-60, and U937 cell lines and fibroblasts, including the determination of IC50 using
flow cytometry and multiplex analysis.

3. Conclusions

An effective method was developed for the preparation of aromatic derivatives of lembe-
hyne B, using, at the key stage of synthesis, the reaction of catalytic cross-cyclomagnesiation
of terminal 1,2-dienes (Dzhemilev reaction). Moreover, their antitumor activity was also
studied using the modern methods of flow cytometry and multiplex analysis.

4. Experimental Part

Commercially available reagents (Sigma-Aldrich and Acros) were used. Reactions
with organomagnesium compounds were carried out under a dried argon atmosphere.
1,2-dienes were prepared according to the known procedure. Reaction products were
analyzed on a Carlo Erba chromatograph (a Hewlett Packard Ultra-1 glass capillary column,
25 m × 0.2 mm, flame ionization detector, operating temperature 50–170 ◦C, carrier gas
helium). TLC was performed on Silufol UV-254 plates. The elemental composition of
compounds was determined using a Carlo Erba-1106 instrument. Mass spectra were
obtained using a Bruker MALDI-TOF/TOF Autoflex III instrument. The 1H and 13C NMR
spectra were recorded on a Bruker Avance 400 spectrometer (100.62 MHz for 13C, and
400.13 MHz for 1H).

Cross-cyclomagnesiation of 1,2-diene (2(a–c)) and 2-(pentadeca-13,14-dien-1-yloxy)tetrahydro-2H-
pyran (3) with EtMgBr in the presence of Mg metal and Cp2TiCl2 catalyst was carried out, accord-
ing known procedure [11]. 2-(((13Z,17Z)-19-phenylnonadeca-13,17-dien-1-yl)oxy)tetrahydro-2H-
pyran (5a). Yield, 79%; Rf = 0.45; 1H NMR (400 MHz, CDCl3) δ: 1.34-1.93 (28H, m, CH2),
2.03-2.29 (8H, m, CH2), 3.40-3.96 (4H, m, CH2-O), 4.64 (1H, t, J = 6 Hz, CH-O), 5.42-5.68
(2H, m, CH=), 7.21-7.44 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: 19.71, 25.63, 26.26,
27.36, 27.40, 27.53, 29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76, 125.85, 128.36, 128.39, 128.49,
128.94, 130.26, 130.60, 141.08; MS (MALDI-TOF), m/z: 440 [M]+; C30H48O2; found (%): C,
81.61; H, 10.89; calc. for C30H48O2 (%): C, 81.76; H, 10.97. 2-(((13Z,17Z)-20-phenylicosa-13,17-
dien-1-yl)oxy)tetrahydro-2H-pyran (5b). Yield, 78%; Rf = 0.44; 1H NMR (400 MHz, CDCl3) δ:
1.30-1.91 (30H, m, CH2), 2.00-2.29 (8H, m, CH2), 3.41-3.96 (4H, m, CH2-O), 4.63 (1H, t, J = 6
Hz, CH-O), 5.42-5.68 (2H, m, CH=), 7.21-7.45 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3)
δ: 19.70, 25.66, 26.26, 26.90, 27.36, 27.41, 27.53, 29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76,
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125.85, 128.36, 128.39, 128.49, 128.94, 130.26, 130.61, 141.08; MS (MALDI-TOF), m/z: 454
[M]+; C31H50O2; found (%): C, 81.84; H, 11.10; calc. for C31H50O2 (%): C, 81.88; H, 11.08.
2-(((13Z,17Z)-21-phenylhenicosa-13,17-dien-1-yl)oxy)tetrahydro-2H-pyran (5c). Yield, 82%; Rf
= 0.46; 1H NMR (400 MHz, CDCl3) δ: 1.34-1.90 (32H, m, CH2), 2.03-2.29 (8H, m, CH2),
3.40-3.96 (4H, m, CH2-O), 4.64 (1H, t, J = 6 Hz, CH-O), 5.42-5.68 (2H, m, CH=), 7.21-7.44 (5H,
m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: 19.71, 25.63, 26.26, 26.90, 27.36, 27.40, 27.53,
29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76, 125.85, 128.36, 128.39, 128.49, 128.94, 130.26,
130.60, 141.08; MS (MALDI-TOF), m/z: 468 [M]+; C32H52O2; found (%): C, 81.94; H, 11.11;
calc. for C32H52O2 (%): C, 81.99; H, 11.08.

THP-deprotection of ether (5(a–c)) was carried out with p-TsOH in CH2Cl2/MeOH using known
method [26]. (13Z,17Z)-19-phenylnonadeca-13,17-dien-1-ol (6a). Yield, 78%; Rf = 0.42 (hexane/
EtOAc—5:1); 1H NMR (400 MHz, CDCl3) δ: 1.30-1.69 (22H, m, CH2), 1.94-2.28 (6H, m,
CH2), 3.66 (2H, t, J = 6 Hz, CH2-O), 5.39-5.65 (4H, m, =CH), 7.20-7.34 (5H, m, CH=); 13C
NMR (100.62 MHz, CDCl3) δ: 25.78, 27.32, 27.49, 29.36-29.77, 32.80, 33.57, 63.05, 125.85,
128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15; MS (MALDI-TOF), m/z: 356 [M]+;
C25H40O; found (%): C, 84.13; H, 11.22; calc. for C25H40O (%): C, 84.20; H, 11.30. (13Z,17Z)-
20-phenylicosa-13,17-dien-1-ol (6b). Yield, 79%; Rf = 0.42 (hexane/EtOAc—5:1); 1H NMR
(400 MHz, CDCl3) δ: 1.30-1.69 (24H, m, CH2), 1.94-2.28 (6H, m, CH2), 3.66 (2H, t, J = 6 Hz,
CH2-O), 5.39-5.65 (4H, m, =CH), 7.20-7.34 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3)
δ: 25.78, 27.32, 27.49, 29.36-29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94,
130.30, 130.66, 141.15; MS (MALDI-TOF), m/z: 370 [M]+; C26H42O; found (%): C, 84.22; H,
11.44; calc. for C26H42O (%): C, 84.26; H, 11.42. (13Z,17Z)-20-phenylhenicosa-13,17-dien-1-ol
(6c). Yield, 77%; Rf = 0.42 (hexane/EtOAc—5:1); 1H NMR (400 MHz, CDCl3) δ: 1.30-1.69
(26H, m, CH2), 1.94-2.28 (6H, m, CH2), 3.66 (2H, t, J = 6 Hz, CH2-O), 5.39-5.65 (4H, m, =CH),
7.20-7.34 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: 25.78, 27.32, 27.49, 29.36-29.77,
32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15; MS (MALDI-
TOF), m/z: 370 [M]+; C27H44O; found (%): C, 84.33; H, 11.50; calc. for C27H44O (%): C, 84.31;
H, 11.53.

The oxidation of the alcohol (6(a–c)) with Dess–Martin periodinane was carried out according
known procedure [27]. (13Z,17Z)-19-phenylnonadeca-13,17-dienal (7a). Yield, 82%; 1H NMR
(400 MHz, CDCl3) δ: 0.88-1.69 (18H, m, CH2), 2.00-2.28 (6H, m, CH2), 2.43 (2H, dt, CH2),
3.43 (2H, d, Ph-CH2), 5.31-5.63 (4H, m, =CH), 7.19-7.33 (5H, m, CH=), 9.78 (1H, t, J = 6 Hz,
O=CH); 13C NMR (100.62 MHz, CDCl3) δ: 22.11, 27.31, 27.34, 27.48, 29.19–29.76, 33.57, 43.93,
125.85, 128.37, 128.40, 128.45, 128.95, 130.29, 130.62, 141.14, 202.93; MS (MALDI-TOF), m/z:
354 [M]+; C25H38O; found (%): C, 84.53; H, 10.71; calc. for C25H38O (%): C, 84.68; H, 10.80.
(13Z,17Z)-20-phenylicosa-13,17-dien-1-ol (7b). Yield, 78%; Rf = 0.42 (hexane/EtOAc—5:1); 1H
NMR (400 MHz, CDCl3) δ: 1.30-1.69 (24H, m, CH2), 1.94-2.28 (6H, m, CH2), 3.66 (2H, t, J
= 6 Hz, CH2-O), 5.39-5.65 (4H, m, =CH), 7.20-7.34 (5H, m, CH=); 13C NMR (100.62 MHz,
CDCl3) δ: 25.78, 27.32, 27.49, 29.36-29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45,
128.94, 130.30, 130.66, 141.15; MS (MALDI-TOF), m/z: 370 [M]+; C26H42O; found (%): C,
84.24; H, 11.44; calc. for C26H42O (%): C, 84.26; H, 11.42. (13Z,17Z)-21-phenylhenicosa-13,17-
dien-1-ol (7c). Yield, 80%; Rf = 0.41 (hexane/EtOAc—5:1); 1H NMR (400 MHz, CDCl3) δ:
1.30-1.69 (26H, m, CH2), 1.94-2.28 (6H, m, CH2), 3.66 (2H, t, J = 6 Hz, CH2-O), 5.39-5.65
(4H, m, =CH), 7.20-7.34 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: 25.78, 27.32, 27.49,
29.36-29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15;
MS (MALDI-TOF), m/z: 384 [M]+; C27H44O; found (%): C, 84.32; H, 11.50; calc. for C27H44O
(%): C, 84.31; H, 11.53.

Procedure for preparation of alkyne (8(a–c)) was carried out according to known procedure [11].
(15Z,19Z)-21-phenyl-1-(trimethylsilyl)henicosa-15,19-dien-1-yn-3-ol (8a). Yield, 90%; 1H NMR
(400 MHz, CDCl3) δ: 0.22 (9H, s, CH3), 1.31-1.75 (22H, m, CH2), 1.98-2.27 (6H, m, CH2), 3.45
(2H, d, Ph-CH2), 4.38 (1H, t, J = 5.0 Гц), 5.38–5.66 (2H, m, =CH), 7.20-7.34 (5H, m, CH=); 13C
NMR (100.62 MHz, CDCl3) δ: -0.06, 25.15, 27.33, 27.35, 27.49, 29.27–29.78, 33.58, 37.73, 62.90,
89.23, 107.07, 125.86, 128.38, 128.42, 128.46, 128.95, 130.30, 130.65, 141.14; MS (MALDI-TOF),
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m/z: 453[M]+; C30H48OSi; found (%): C, 79.46; H, 10.54; calc. for C30H48OSi (%): C, 79.57;
H, 10.68. (15Z,19Z)-22-phenyl-1-(trimethylsilyl)docosa-15,19-dien-1-yn-3-ol (8b). Yield, 91%;
1H NMR (400 MHz, CDCl3) δ: 0.22 (9H, s, CH3), 1.31-1.75 (24H, m, CH2), 1.98-2.27 (6H, m,
CH2), 3.45 (2H, d, Ph-CH2), 4.38 (1H, t, J = 5.0 Гц), 5.38–5.66 (2H, m, =CH), 7.20-7.34 (5H, m,
CH=); 13C NMR (100.62 MHz, CDCl3) δ: -0.06, 25.15, 27.33, 27.35, 27.49, 29.27–29.78, 33.58,
37.73, 62.90, 89.23, 107.07, 125.86, 128.38, 128.42, 128.46, 128.95, 130.30, 130.65, 141.14; MS
(MALDI-TOF), m/z: 466[M]+; C31H50OSi; found (%): C, 79.77; H, 10.81; calc. for C31H50OSi
(%): C, 79.76; H, 10.80. (15Z,19Z)-23-phenyl-1-(trimethylsilyl)tricosa-15,19-dien-1-yn-3-ol (8c).
Yield, 91%; 1H NMR (400 MHz, CDCl3) δ: 0.22 (9H, s, CH3), 1.31-1.75 (26H, m, CH2),
1.98-2.27 (6H, m, CH2), 3.45 (2H, d, Ph-CH2), 4.38 (1H, t, J = 5.0 Гц), 5.38–5.66 (2H, m, =CH),
7.20-7.34 (5H, m, CH=); 13C NMR (100.62 MHz, CDCl3) δ: −0.06, 25.15, 27.33, 27.35, 27.49,
29.27–29.78, 33.58, 37.73, 62.90, 89.23, 107.07, 125.86, 128.38, 128.42, 128.46, 128.95, 130.30,
130.65, 141.14; MS (MALDI-TOF), m/z: 480 [M]+; C30H48OSi; found (%): C, 79.95; H, 10.88;
calc. for C32H52OSi (%): C, 79.93; H, 10.90.

Procedure for preparation of alkyne (1(a–с)) was carried out according to known procedure [11].
(15Z,19Z)-21-phenylhenicosa-15,19-dien-1-yn-3-ol (1a). Yield, 80%; 1H NMR (400 MHz,
CDCl3) δ: 1.30-1.78 (22H, m, CH2), 1.92-2.26 (8H, m, CH2), 2.48 (1H, d, CH), 3.43 (2H,
d, Ph-CH2), 4.39 (1H, t, J = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18-7.33 (5H, m, CH=); 13C
NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36,
72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16; MS (MALDI-TOF),
m/z: 380 [M]+; C27H42O; found (%): C, 85.11; H, 10.63; calc. for C27H42O (%): C, 85.20;
H, 10.59. (15Z,19Z)-22-phenyldocosa-15,19-dien-1-yn-3-ol (1b). Yield, 82%; 1H NMR (400
MHz, CDCl3) δ: 1.30-1.78 (24H, m, CH2), 1.92-2.26 (8H, m, CH2), 2.48 (1H, d, CH), 3.43
(2H, d, Ph-CH2), 4.39 (1H, t, J = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18-7.33 (5H, m, CH=);
13C NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36,
72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16; MS (MALDI-TOF),
m/z: 396 [M]+; C28H44O; found (%): C, 84.77; H, 11.13; calc. for C28H44O (%): C, 84.79; H,
11.18. (15Z,19Z)-23-phenyltricosa-15,19-dien-1-yn-3-ol (1c). Yield, 84%; 1H NMR (400 MHz,
CDCl3) δ: 1.30-1.78 (20H, m, CH2), 1.92-2.26 (8H, m, CH2), 2.48 (1H, d, CH), 3.43 (2H, d,
Ph-CH2), 4.39 (1H, t, J = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18-7.33 (5H, m, CH=); 13C NMR
(100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36, 72.84,
85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16; MS (MALDI-TOF), m/z:
410 [M]+; C29H46O; found (%): C, 84.78; H, 11.25; calc. for C29H46O (%): C, 84.81; H, 11.29.
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