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Abstract: Purpurogallin or (6E,8Z)-2,3,4,6-tetrahydroxy-5H-benzo[7]annulen-5-one is a benzotropolone
possessing a dienic system and known to inhibit the TLR1/TLR2 activation pathway. We have
recently described the easy green synthesis of purpurogallin from pyrogallol catalyzed by a copper
complex or by vegetable oxidases. The purpurogallin was acetylated and the tetra-acetate derivative
thus obtained was engaged in a Diels–Alder reaction with various dienophiles (benzoquinone,
maleic anhydride, ethylmaleimide, phenylmaleimide, etc.). The results obtained are presented
and discussed.
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1. Introduction

The benzotropolones represent a class of natural products, which consist of a tropolone
unit (hydroxycycloheptatrienone) fused to a benzene ring. The most popular is purpuro-
gallin (1) (Figure 1) present in Quercus trees and displaying biological properties [1–9].
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1. Introduction 
The benzotropolones represent a class of natural products, which consist of a 

tropolone unit (hydroxycycloheptatrienone) fused to a benzene ring. The most popular is 
purpurogallin (1) (Figure 1) present in Quercus trees and displaying biological properties 
[1–9]. 

 
Figure 1. Structure of purpurogallin. 

Many benzotropolones are known as secondary metabolites, such as fomentariol 
from the fungus Fomes fomentarius [10], goupiolone A, isolated from the aerial parts of 
Goupia glabra, a plant from the Amazon region of Peru [11], and crocipodin, a pigment 
extracted from the fungus Leccinum crocipodium (Boletales) [12], see Figure 2. 
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Figure 1. Structure of purpurogallin.

Many benzotropolones are known as secondary metabolites, such as fomentariol from
the fungus Fomes fomentarius [10], goupiolone A, isolated from the aerial parts of Goupia
glabra, a plant from the Amazon region of Peru [11], and crocipodin, a pigment extracted
from the fungus Leccinum crocipodium (Boletales) [12], see Figure 2.
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Figure 2. (a) Examples of natural benzotropolones fomentariol; (b) goupiolone A; (c) crocipodin. 

We have shown that purpurogallin (1) can be obtained by catalytic oxidation of 
pyrogallol according to our previous work [13]. Purpurogallin (1) presents an intramo-
lecular hydrogen bond which makes it difficult to modify the hydroxyl involved in this 
bond (see Figure 3). 

  
Figure 3. Intramolecular H-bond in pupurogallin (1). 

Purpurogallin (1) can yet be converted into purpurogallin tetraacetate by peracety-
lation with acetic anhydride in the presence of DMAP [14] as catalyst in a yield of 87% 
according to the Scheme 1). 

 
Scheme 1. Acetylation of purpurogallin. 

Purpurogallin, which possesses an antiaromatic tropolone nucleus, is able to behave 
like a diene [15]. So, we describe herein the Diels–Alder reaction of purpurogallin 
tetraacetate with different dienophiles in refluxing bromobenzene (154 °C) according to 
Scheme 2. 
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Figure 2. (a) Examples of natural benzotropolones fomentariol; (b) goupiolone A; (c) crocipodin.

We have shown that purpurogallin (1) can be obtained by catalytic oxidation of pyro-
gallol according to our previous work [13]. Purpurogallin (1) presents an intramolecular
hydrogen bond which makes it difficult to modify the hydroxyl involved in this bond
(see Figure 3).
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Figure 3. Intramolecular H-bond in pupurogallin (1).

Purpurogallin (1) can yet be converted into purpurogallin tetraacetate by peracety-
lation with acetic anhydride in the presence of DMAP [14] as catalyst in a yield of 87%
according to the Scheme 1).
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Scheme 1. Acetylation of purpurogallin.

Purpurogallin, which possesses an antiaromatic tropolone nucleus, is able to behave
like a diene [15]. So, we describe herein the Diels–Alder reaction of purpurogallin tetraac-
etate with different dienophiles in refluxing bromobenzene (154 ◦C) according to Scheme 2.
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The products formed were isolated by chromatography on a silica column and were
identified by NMR and mass spectroscopy. The results are summarized in Table 1, with the
yields corresponding to the pure isolated products.

2. Materials and Methods

Melting points were measured on a Kofler apparatus and are reported uncorrected. IR
spectra were obtained with solids with a Fourier transform Perkin-Elmer Spectrum One
with ATR accessory. The frequencies of absorption are given in cm−1. Only significant
absorptions are listed. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded
while using CDCl3 or DMSO-d6 with TMS as an internal standard on a Bruker DPX
400 NMR spectrometer. Chemical shifts are reported in ppm. Mass spectra were recorded
on a Xevo G2-XS QTof (Waters), mass range (50–1000 m/z), source temperature 120 ◦C,
desolvatation temperature 500 ◦C, with electrospray ionization (ESI, positive mode), lock
spray PEG.

We already reported the synthesis of purporogallin from pyrogallol under green
conditions [13].

The geometries of the neutral molecules were optimized using B3LYP. The single point
calculations were performed using the B3LYP/6-31G* method of the Spartan program [16].
Calculations in bromobenzene (ε = 5.4) were performed using SM8 [17,18].

2.1. Synthesis of Purpurogallin Tetraacetate (2)

In a 100 mL flask fitted with a condenser and a magnetic bar and a CaCl2 guard, 0.1
mole of purpurogallin is dissolved in a mixture of 40 mL of acetic anhydride and N,N-
dimethyl-4-aminopyridine (DMAP) (4 mmol). The reaction mixture is heated to 130 ◦C
for 20 h. After cooling, the solvent is evaporated off, a solid is recovered which is purified
by column chromatography with, as eluent, hexane/ethyl acetate (1:1). A yellow solid is
obtained with 87% yield.

m.p = 190–192 ◦C.
FT-IR (cm−1): 2940; 1769; 1631.
1H NMR δ (400 MHz, DMSO-d6, ppm): δ 7.26 (1H, s,); 6.91 (1H, d); 6.58 (1H, d); 6.34

(1H, dd,); 2.13 (3H, s,); 2.11 (3H, s); 2.09 (3H, s); 2.06 (3H, s).
13C NMR (100 MHz, DMSO d6, ppm): δ 180.9, 168.2, 167.8, 167.2, 166.6, 149.9, 145.2,

143.8, 136.9, 134.7, 134.0, 128.0, 123.5, 123.1, 122.3, 20. 5.
HRMS: for C19H16O9, (M+1Na): found 411.

2.2. General Experimental Procedure for [4+2] Cycloaddition

• Products 4a-d.

The purpurogallin tetraacetate (2) (10 mmol) and the (3a-d) compound (20 mmol) are
dissolved in 10 mL of bromobenzene. The mixture is heated under reflux at 150 ◦C for 5 h.
The reactional mixture is chromatographied on a silica column with cyclohexane/ethyl
acetate (1/1) as solvent.

The product (4a) was obtained from N-phenylmaleimide:
White solid, yield: 39%, m.p > 276 ◦C.
FT-IR (cm−1): 2989; 1781; 1713; 1598.
1H NMR δ (400 MHz, CDCl3, ppm): δ 7.46 (1H, t, J = 7.3 Hz); 7.41 (2H, dd, J = 7.3 Hz,

J = 4.0 Hz); 7.22 (2H, d, J = 4 Hz); 6.79 (1H, s); 6.68 (1H, d, J = 8.0 Hz); 6.06 (1H, dd, J = 8.0 Hz;
J = 9.9 Hz); 4.72 (1H, dd, J = 9.9, J = 1.8 Hz); 4.39 (1H, d, J = 5.8 Hz); 3.64 (1H, dd, J = 5.8 Hz,
J = 1.8 Hz); 2.32 (3H, s); 2.30 (6H, s); 2.24 (3H, s).

13C NMR (400 MHz, CDCl3 ppm): δ 175.1; 169.5; 168.1; 167.6; 167.1; 166.9; 146.6; 146.5;
140.6; 136.1; 135.0; 131.5; 129.3; 129.0; 126.4; 126.2; 120.2; 83.8; 47.3; 43.3; 41.1; 23.1; 21.5; 20.8:
20.7; 20.5.

HRMS: for (C29H23NO11Na): calculated: 584.1169; found 584.1.
The product (4b) was obtained from N-ethylmaleimide:
White solid, yield: 36%, m.p > 276 ◦C.
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FT-IR (cm−1): 2983; 1780; 1711; 1601.
1H NMR δ (400 MHz, CDCl3, ppm): δ 6.71 (1H, s); 6.62 (1H, d, J = 7.8 Hz); 6.02 (1H,

dd, J = 8.7 Hz, J = 7.8 Hz), 4.32 (1H, d, J = 6.2 Hz); 3.60 (2H, q, J = 7.2 Hz); 3.55 (1H, dd,
J = 6.2, J = 1.8 Hz); 3.48 (1H, dd J = 8.7, J = 1.8 Hz); 2.33 (3H, s); 2.32 (3H, s); 2.29 (3H, s); 2.27
(3H, s); 1.16 (3H, t, J = 7.2 Hz).

13C NMR (400 MHz, CDCl3, ppm): δ 175.1; 169.5; 168.1; 168.0; 167.1; 166.4; 147.6;
146.6; 146.4; 136.0; 134.1; 131.3; 129.2; 120.1; 112.2; 84.2; 47.2; 43.7; 40.1; 34.5; 21.2; 20.8, 20.5;
20.1; 13.0.

HRMS: for (C25H23NO11Na): calculated: 536.1169; found 536.1.
The product (4c) was obtained from maleic anhydride:
White solid, yield: 58%, m.p > 276.
FT-IR (cm−1): 2979; 1777; 1715; 1599.
1H NMR δ (400 MHz, CDCl3, ppm): δ 6.63 (1H, dd, J = 9.2 Hz, J = 7.1 Hz); 6.48 (1H, s);

6.15 (1H, d, J = 7.1 Hz); 4.17 (1H, dd, J = 7.4 Hz, J = 2.1 Hz); 3.77 (1H, d, J = 7.4 Hz); 3.65 (1H,
dd, J = 9.2 Hz, J = 2.1 Hz); 2.31 (3H, s); 2.29 (3H, s); 2.26 (3H, s); 2.23 (3H, s).

13C NMR (400 MHz, CDCl3, ppm): δ 176.1; 172.6; 168.0; 167.4; 167.1; 166.4; 152.0; 137.1;
136.1; 134.7; 133.9; 131.3; 127.4; 121.7; 106.2; 88.3; 48.7; 47.5; 43.5; 21.2; 20.7; 20.4; 20.2.

HRMS: for (C23H18O12Na): calculated: 509.0938; found 509.1.
The product (4d) was obtained from 1,4-benzoquinone:
Green solid, yield: 41%, m.p > 276 ◦C.
FT-IR (cm−1): 2979; 1777; 1715; 1599.
1H NMR δ (400 MHz, CDCl3, ppm): 6.76 (1H, s); 6.66 (1H, dd, J = 17.2 Hz, J = 8.4 Hz);

6.12 (1H, d, J = 17.2 Hz); 4.54 (1H, dd, J = 7.3 Hz, J = 3.1 Hz); 4.09 (1H, d, J = 7.3 Hz); 3.37
(1H, dd, J = 8.4 Hz, J = 3.1 Hz); 2.31 (9H, s); 2.13 (3H, s).

13C NMR (400 MHz, CDCl3, ppm): δ 171.5; 168.5; 167.7; 167.4; 164.5; 161.0; 146.9; 143.5;
142.4; 140.7; 137.2; 134.8; 130.0; 121.3; 89.3; 48.6; 46.6; 46.0; 31.3; 30.9; 21.4; 21.0; 20.7; 19.7.

HRMS: for (C25H20O11Na): calculated: 519.0903; found 519.1.

3. Result and Discussion

The study of the reactivity of purpurogallin led us to consider the diene system present
in this molecule to carry out [4+2] cycloaddition reactions with different dienophiles.
However, the purpurogallin was previously acetylated to avoid any interaction of phenolic
OHs in the cycloaddition reaction (Scheme 3).
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Table 1. Products of Diels–Alder reaction isolated.

Entry Dienophile Product (3a-d) Yield

a N-Phenylmaleimide
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4. Theoretical Studies

The frontier orbitals of purpurogallin tetraacetate (2) and dienophiles (3a-d) were
calculated using the DFT-B3LYP with the 6–31G(d) basis set in vacuum and then in bro-
mobenzene (dielectric constant ε = 5.4) using Continuum Solvation Models, SM8, and are
reported in Table 2.

Table 2. Frontier orbitals calculated.

Product HOMO (eV) LUMO (eV) m
Debye

HOMO
(eV) LUMO (eV) m Debye

In Vacuum With Solvent: Bromobenzene

Dienes
(Donor)

Purpurogallin (1) −5.54 −1.89 2.71 −5.59 −1.86 3.36

Tetraacetylpurpurogallin −6.43 −1.97 11.07 −6.10 −1.69 12.84

Tetramethylpurpurogallin −5.66 −1.44 2.52 −5.65 −1.48 2.88

Dienophiles
(Acceptor)

Maleic anhydride 3c −8.18 −3.75 3.64 −7.99 −2.88 4.15

N-Phenyl maleimide 3a −6.50 −2.74 0.91 −6.46 −2.50 1.31

N-Ethyl maleimide 3b −7.37 −2.58 0.63 −7.27 −2.33 0.85

Benzoquinone 3d −7.36 −3.54 0 −7.11 −3.22 0
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From the position of the frontier orbitals, i.e., the difference between HOMOd and
LUMOa and difference between HOMOa and LUMOd, the most probable Diels–Alder
reaction appears as normal demand with a transfer of electrons from the purpurogallin
tetraacetate or tetramethyl purpurogallin as donor to acceptor dienophile in the four cases
studied. In the case of non-benzenoid aromatic compounds such as purpurogallin or
tetraacetate purpurogallin, the antiaromaticity leads to normal electron demand Diels–
Alder reactions.

The bromobenzene solvent somewhat facilitates the reaction by lowering the HOMO
(−6.43 eV in vacuum to −6.10 eV) of the purpurogallin tetraacetate which appears to be
quite polar (12.84 D) compared to the non-acetylated purpurogallin (3.36 D).

The reaction appears, however, more difficult than with tetramethylpurpurogallin
(HOMO −5.65 eV) which has been used in the literature. In bromobenzene, according
to the energy values of the LUMOs of dienophiles, benzoquinone (−3.22 eV) is more
reactive than maleic anhydride (−2.88 eV), than N-phenylmaleimide (−2.50 eV), and than
N-ethylmaleimide (−2.33 eV).

The positions of frontier orbitals in vacuum and in bromobenzene show that increasing
polarity has a beneficial effect on DA reactions (use of DMF). Unfortunately, we did not
have the means to verify this experimentally due to the circumstances.

5. Stereochemistry

The Diels–Alder reaction is a supra-supra cycloaddition; depending on the arrival of
the dienophile relative to the diene (purpurogallin), an exo or endo compound is obtained.

The tetraacetylpurpurogallin (2) molecule is almost flat (see Figure 4) and there is
very little difference between the upper faces (exo attack) and the lower face (endo attack);
on the other hand, in the cycloaddition products the diedral angles of CH-CH (CO) and
CH(CO)-CH (CO) are very similar in the two diastereoisomers according to the molecular
modelization after optimization of the exo and endo products, and it is not possible to
know if a single isomer or two is formed.
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6. Conclusions

Tetraacetylpurpurogallin leads to Diels–Alder reactions with cyclic dienophiles in
moderate yield under thermal activation. The use of a solvent more polar than bromoben-
zene and catalyst should be able to increase the yields. The reactions of purpurogallin
tetraacetate 2 with the different dienophiles 3a-d correspond to normal electron demand
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