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Abstract: In search of new thermotropic, photoswitchable materials, a number of 4′-alkoxy-4-(ω-
cinnamoylalkoxy)azobenzenes were prepared. The synthetic procedure included O-alkylation of
4-nitrophenol, followed by reduction of the nitro group (H2, Pd/C), diazotization of the aniline, and
subsequent reaction with ω-hydroxyalkoxybenzenes, followed by a modified Appel-type esterifica-
tion (BrCCl3, PPh3). The photochemical behavior of the substances was investigated.

Keywords: photoswitchable materials; 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzene; modified Appel-
type esterification

1. Introduction

Photoswitchable molecules are able to isomerize between at least two metastable forms
when photoirradiated [1]. These types of molecules have found interest in different areas
in physics, chemistry, and biology [2–5]. Photoswitchable molecules have a wide range of
applications, which include their use in photoelectric cells. They are also utilized in the
generation of three-dimensional animations and images, as well as in screen displays in con-
junction with liquid crystals [6]. Photoswitching molecules can be used as dopants in liquid
crystalline hosts. Alternatively, photoswitching compounds can be liquid crystalline them-
selves, where often the photoswitching unit is an azobenzene. Thus, azobenzene derivatives
have been utilized in photoresponsive functional devices in smart polymers [7], in molecu-
lar switches [8], in data storage systems [9], and as molecular “machines” in supramolecular
organic chemistry [10–12]. In this regard, 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzenes of
type 1 (Figure 1) were prepared as potentially photoswitchable compounds with the azo-
and cinnamoyl functions as two photoreactive groups [13].
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Figure 1. 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzene (1).  
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Figure 1. 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzene (1).
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2. Experimental Part

General. The compounds were synthesized, purified (using crystallization or column
chromatography), and characterized by 1H NMR, 13C NMR, DEPT, and/or INEPT tech-
niques, LC-MS-MS, and IR spectroscopy. Selected compounds were analyzed by UV–Vis
spectroscopy and submitted to DSC thermal analysis and X-ray single-crystal structural
determination. Selected azo-cinnamates were photoirradiated in an attempt to photo-
isomerize the molecules. The progress of the photoreactions was followed by either UV–Vis
or 1H NMR spectroscopy.

Column chromatography was carried out on commercial 60 Å silica gel (230–400 mesh,
Merck grade 9385, Sigma-Aldrich) and on recycled silica gel. Analytical thin-layer chro-
matography (TLC) was carried out on TLC-Alu-foils from Fluka (with a fluorescent indi-
cator at λ = 254 nm). 1H NMR (at 400 MHz) and 13C NMR (at 100.5 MHz) spectra were
taken on a Varian 400 MHz spectrometer. Infrared spectra were taken on a Thermo Nicolet
Nexus 670 FT-IR spectrometer (solid samples as KBr pellets). UV–Vis spectroscopy was
performed on a UV-1800 (Shimadzu) spectrophotometer. For photoirradiation experiments,
a Luzchem LZC 4V photoreactor was used with either 13 USHIO G8T5 lamps (7.2 W
low-pressure mercury arc lamps with a radiation peak at λ = 253.7 nm) or with 14 Hitachi
FL8BL-B (0.75 W, UV irradiance 8.0 (µ/cm)2, with a radiation peak at λ = 352 nm). CH2Cl2
(Sigma-Aldrich, purris. pa, ≥99.9% (GC)) and benzene were used as solvents in the photoir-
radiation experiments. Mass spectrometry on the synthesized compounds was performed
using a LC-MS-MS 8060 (Shimadzu) with Dr. Iltaf Khan.

Synthesis of (E)-11-(4-((E)-(4-(Octyloxy)phenyl)diazenyl)phenoxy)undecyl
3-(4-methoxyphenyl)-acrylate (1a) by Modified Appel Reaction:

To a solution of triphenylphosphine (PPh3, 970 mg, 3.70 mmol) in dry CH2Cl2, (15 mL)
bromotrichloromethane (BrCCl3, 720 mg, 3.63 mmol) was added dropwise, and the re-
sulting solution was stirred at reflux temperature for 25 min, during which it turned
yellow-brown. Thereafter, 3-(4-methoxyphenyl)acrylic acid (9a, 530 mg, 3.00 mmol) was
added, and the mixture was stirred at reflux temperature for 30 min. Then, 8a (600 mg,
1.21 mmol) was added, and the mixture was stirred at reflux temperature for an additional
14 h. The cooled solution was submitted directly to column chromatography on silica gel
(CH2Cl2) to give 1a (625 mg, 78.5%) as a yellow solid (Figure 2).

δH (400 MHz, CDCl3): 0.88 (3H, t, CH3, 3J = 6.8 Hz), 1.24-1.84 (24H, m, CH2), 3.83 (3H,
s, OCH3), 4.02 (4H, t, OCH2, 3J = 6.7 Hz), 4.18 (2H, t, OCH2, 3J = 6.5 Hz), 6.31 (1H, d, CH,
3J = 16.0 Hz), 6.89 (2H, d, CH, 3J = 8.0 Hz), 6.98 (4H, d, CH, 3J = 8.0 Hz), 7.47 (2H, d, CH,
3J = 8.0 Hz), 7.63 (1H, d, CH, 3J = 16.0 Hz), 7.86 (4H, d, CH, 3J = 8.0 Hz); δC (100.5 MHz,
CDCl3): 14.1 (CH3), 22.6 (CH2), 25.9 (CH2), 26.0 (CH2), 28.7 (CH2), 29.2 (CH2), 29.2 (CH2),
29.2 (CH2), 29.2 (CH2) 29.3 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 31.8 (CH2), 55.3
(OCH2), 68.2 (OCH2), 68.2 (OCH2), 68.3 (OCH2), 114.2 (CH), 114.6 (CH), 115.7 (CH), 124.3
(CH), 127.1 (CH), 129.6 (CH), 144.2 (CH), 146.7 (CH), 161.1 (CH), 161.2 (CH), 167.4 (C=O);
υ IR (KBr, cm−1): 3429, 2029, 2851, 1702, 1632, 1602, 1580, 1514, 1496, 1473, 1289, 1243, 117,
1027, 842. Mass found: 657.
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Figure 2. 1H NMR and 13C NMR spectral data of (E)-11-(4-((E)-(4-(octyloxy)phenyl)diazenyl)
phenoxy)undecyl 3-(4-methoxyphenyl)-acrylate (1a).

3. Results and Discussion
3.1. Synthesis of the Target Compounds

The syntheses of target compound 1 started with commercially available 4-nitrophenol
(2), which was subjected to a Williamson ether synthesis with various, commercially
available ω-bromoalkan-1-ols (3). With the relatively acidic phenol system, K2CO3 can
be used as a base. Some of the products 4 were gained by simple extraction; some of
the products needed to be purified by column chromatography on silica gel. Next, the
nitro group in 4 needed to be reduced. There are various ways to reduce nitrobenzenes
to anilines, such as with low valent metals, zinc, and tin, in an acidic medium [14]. Also,
a reduction with samarium is possible [15]. Efficient, however, is the hydrogenation of
nitrobenzenes over metal catalysts as little solid waste is created as a side product. Typical
metal catalysts for this reaction are Raney Nickel [16], finely divided nickel on solid [17],
also in the form of Urushibara nickel, as well as platinum oxide PtO2. Also, palladium
on carbon can be used as hydrogenation catalyst. The hydrogenation of compounds 4
over 10w% Pd/C in THF using externally supplied hydrogen was successful, and anilines
5 were produced almost quantitatively. No extensive purification of the products was
necessary. Because of safety concerns, later NaBH4–acetic acid was used as an internal
hydrogen source [18]. These reactions, however, were very slow to complete at the reaction
scale used. Next, the obtained anilines 5 were subjected to a diazotization (NaNO2, HCl) in
the presence of phenol (6) to give diazobenzenes 7. The reaction was not easy to perform,
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and reaction yields varied. The diazobenzenes 7 were alkylated at the phenol OH using
K2CO3 as base. The base was not strong enough to also deprotonate the alcohol function in
7, so that the alkylation proceeded at the phenolic OH only, giving products 8, although the
reaction temperature needed was quite high (120 ◦C). For the preparation of azo-cinnamates
1, the final step was an esterification reaction. For this, we decided to generate cinnamoyl
halides in situ, via an Appel reaction, utilizing the system BrCCl3, PPh3, Et3N) [19], which
were then reacted with 8 (Scheme 1).
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Scheme 1. Synthesis of the Target Compounds.

3.2. Photoirradiation of the 4′-Alkoxy-4-(ω-cinnamoylalkoxy)azobenzenes

On the UV spectrum, the 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzenes 1, prepared
above, show well-separated absorption maxima, with the absorption of the azobenzene
unit at λ = 360 nm, and a variable absorption of cinnamate moiety of λ = 259–325 nm,
depending on the substitution pattern of the cinnamate (Figure 3). The main idea was to
trigger only the azo group in the synthesized azo-cinnamates 1, while leaving the trans-
double bond of the cinnamate unit untouched by irradiating the molecules at λ = 350 nm,
close to the absorption maximum of the azobenzene moiety at λ = 360 nm. The photoi-
somerization experiments were carried out with the same sample concentrations for all
compounds (1.0 × 10−5 mol/L). The experiments were followed by using UV spectroscopy
and 1H NMR spectroscopy (Figure 4). The results proved that the photoisomerization
time depends on the terminal substitution and different carbon chains linked between
the moieties of the molecules although all molecules reached a photostationary phase
within 35 s of photoirradiation. For all compounds, with increases in the radiation time,
the absorption peak around λ = 360 nm started to decrease (trans-form), while the peak
around λ = 450 nm increased (cis-form). After the photoirradiation was stopped, a slow,
thermally driven cis–trans isomerization took place, the speed of which, again, depended
on the terminal substitution pattern and carbon chain lengths within the molecules. Here,
for some molecules, the thermal cis–trans conversion was not totally complete, even after
25 h, where all experiments were carried out at room temperature.
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cis–/trans–1c after photoirradiation of trans–1c. The azobenzene unit isomerizes, while the cinnamate
moiety remains trans-configurated during the initial photoisomerization process.
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4. Conclusions

A number of 4′-alkoxy-4-(ω-cinnamoylalkoxy)azobenzenes were prepared. It was
found that the azobenzene unit and the cinnamate moiety in these molecules absorb at
different wavelengths and can be addressed selectively by photoirradiation. The azo-
unit was trans/cis isomerized photochemically, while the cinnamate moiety remained
trans-configurated. After the irradiation was halted, the compounds cis/trans isomerized
thermally. The time the molecules reached photochemical equilibrium depended on the
terminal substitution pattern and carbon chain lengths within the molecules. Some of the
compounds have been found to exhibit narrow mesophases, so their thermotropic behavior
needs to be studied in greater detail. It is expected that the molecules can also be used as
switchable dopants in liquid crystalline hosts.
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