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Abstract: In continuation with our research in the use of enols in multicomponent reactions with iso-
cyanides (IMCR), for the first time we have used amide-stabilized enols as the acid component in enol-
Ugi reactions. Thus, the reaction of 2-(hydroxy(phenylamino)methylene)-5,5-dimethylcyclohexane-
1,3-dione with aldehydes, amines and isocyanides provides the expected enamine adducts. On the
other hand, the use of analogous Meldrum’s acid-derived enols permits the synthesis of triamides by
a five-component process with the participation of a molecule of solvent. These results confirm the
great potential of the enol-Ugi reaction for the preparation of a wide variety of structures containing
a peptidomimetic scaffolds.

Keywords: isocyanides; triamides; enamines; enol-Ugi; enol; multicomponent reaction; peptidomimet-
ics; dimedone; Meldrum’s acid

1. Introduction

Multicomponent reactions, and in particular multicomponent reactions of isocyanides
(IMCRs), constitute a highly convergent strategy for the synthesis of diverse molecular
libraries in one-pot with atom and bond economy [1–3]. The most well-known IMCR are
the Passerini [4] reaction and the Ugi [5] reaction, which permit to obtain, respectively,
α-acyloxy amides and α-amido amides in a single step.

We have recently developed an Ugi-type MCR with electron-deficient enols as acid
components (Scheme 1). This enol-Ugi condensation consists in the reaction between
enols (1), aldehydes (2), amines (3) and isocyanides (4) to give polysubstituted hetero-
cyclic enamines containing a pseudopeptidic subunit (5) [6–8]. On the other hand, the
condensation of enols (1), aldehydes (2) and isocyanides (4) selectively gives either three-
or pseudo-four component adducts (6 or 7, respectively), depending on the reaction condi-
tions [9]. In this way, the enol-Ugi and enol-Passerini condensations of heterocyclic enols,
such as pyrrolidinediones (15), 3-hydroxycoumarins (16) and 4-hydroxycoumarins (17)
efficiently afford peptidomimetic enamines and pyrrolidinone-derived enol-ethers. The
use of enols as acid surrogates in IMCR allows the synthesis of peptidomimetic derivatives
of pyrrolidine-2,3-diones [10], privileged structures present in many bioactive compounds
and drugs [11] and coumarins, analogues of a family of plant metabolites having essential
biological activities [12,13].

Our previous work demonstrates that the enol-Ugi [6–8] and the enol-Passerini reac-
tions [9] and their post-condensation modifications [14] constitute an efficient method to
attain new molecular scaffolds by using an array of different starting enols (Figure 1).

Simultaneously, Charton published a similar double 4-component Ugi-type reaction
employing squaric acid as the acid component [15]. This reaction also occurs when substi-
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tuting squaramic or squaramide acids for squaric acid [16]. Tropolone was also used in the
enol-Ugi reaction to give 2-(N,N-dialkylamino)-2,4,6-cycloheptatrien-1-one derivatives [17].
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Other posterior examples of enol-Ugi reaction were reported by Rabêlo and Echemendía
that used enol-3-nitro-1,4 naphthoquinone, secondary diamines and isocyanides [18]. Rivera
and co-workers have used an in situ generated enol for the stereoselective synthesis of
tetrahydropyridines [19] and related natural product hybrids [20] using a multicomponent
reaction of isocyanide. Also, Ramezanpour described the use of saccharin as acid component
in a related enol-Ugi condensation [21].

In other to widen the scope of these novel reactions, we decided to explore the possi-
bility of using other types of enols [22,23], particularly amide-stabilized enols [24], which
would lead to synthetically challenging polyamide containing compounds. Here we re-
port the enol-Ugi reaction of amide-stabilized enols (20) and (21) (Figure 2) to give novel
peptidomimetic structures.
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2. Results and Discussion

Compounds 20 and 21 can exist in different tautomeric forms, as shown in Figure 3.
Experimental and theoretical studies show that the predominant forms in each case are
(20c) and (21a) [24]. However, as equilibrium between tautomers is possible, in principle,
any of the enolic forms a or b could participate in an enol-Ugi condensation.
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To explore the multicomponent chemistry of these compounds, we made react ve
(20) with preformed (E)-N,1-diphenylmethanimine (22a) and cyclohexilisocyanide (4a)
in methanol. After 48 h stirring at room temperature, we obtained a product that was
identified as enamine (24a), confirming that the minor tautomeric enol (20b) was the
substrate for the enol-Ugi condensation (Scheme 2).
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Basing on previous reports, the reaction mechanism must involve the attack of the
isocyanide (4) to the protonated imine (22) resulting in a nitrilium ion that is then is
attacked by the enolate to give the enol-Ugi primary adduct (23). This then undergoes an
intramolecular conjugate addition of the amine nitrogen on the dimedone ring, followed
by β-elimination of the imidate oxygen, providing the final adduct (24) (Scheme 2).

Then, we investigated the enol-Ugi reaction of imine (22a) and tert-butylisocyanide
(4b) with the Meldrum’s acid-derived enol (21). This compound was obtained by reaction
of Medrum’s acid with phenyl isocyanate, according to a literature procedure [24]. Proton
and carbon NMR spectra of (21) in CDCl3 show the only presence of the more stable
tautomeric form (21a). Nevertheless, Rappoport has reported that the enolic form (21b) is
predominant in protic solvents [24], so we anticipated that this could be the reacting form
in the multicomponent condensation.

However, a complex mixture was obtained when the reaction was performed in
methanol or toluene in the presence of ammonium chloride. Successfully, when the reaction
was performed in isopropanol at 20–25 ◦C, a precipitate that showed a single product
on t.l.c. was obtained. The 1H-NMR spectrum of this compound shows the signals
of aromatic groups of the starting enol, aldehyde, amine and the tert-butyl group. In
addition, a quadruplet at 5.07 ppm corresponding to 1 H and a double doublet at 1.28 ppm
corresponding to 6 H evidenced the presence of an isopropyl group. Therefore, this
spectrum does not match with the expected enol-Ugi adduct, although it is consistent with
the formation of a four-component adduct with the participation of isopropanol and the
loss of an acetone molecule.

A possible mechanism entails the enol-Ugi reaction between imine (22), tert-butyl-
socyanide (4b) and the enolic form (21b) to give the enol-Ugi primary adduct (25). This
would rearrange with the loss of acetone to give seven-membered intermediate (26a) that
could tautomerize to (26b) and then react with a molecule of isopropanol with the conse-
quent ring opening (Scheme 3). The structure of the resulting product (27a) is compatible
with the obtained spectroscopic data.
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A control experiment was carried out consisting in stirring
5-(hydroxy(phenylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (21) in isopropanol.
No product formation was observed after 48 h and only starting material (21) was recovered
from the reaction mixture. This strongly suggests that the isopropanol attack should take
place on a reaction intermediate, supporting the proposed mechanism.

This process constitutes a new five-component reaction of aldehydes, amines, enols,
isocyanides and isopropanol leading to peptidomimetic structures containing three amide
groups. Triamides are present in compounds with different applications, such as complex-
ing agents and pharmaceuticals [25–28].
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In summary, two classes of amide stabilized enols have been subjected to enol-Ugi
condensations leading to either rigid or flexible retropeptidic dipeptides (Figure 4). The
substitution pattern in both types of structures is highly tunable by selecting between four
or five different starting components. Furthermore, the peptide sequence could theoretically
be grown from any of the amide or ester ends to obtain extended retropeptidic sequences.
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3. Experimental Section
3.1. Synthesis of Enols

For the preparation of enols we used the synthesis described by Mukhopadhyaya [24].
To a solution of dimedone or Meldrum’s acid (25 mmol) in 25 mL of DMF, 50 mmol of
triethylamine was added and the resulting mixture was stirred for five minutes. Then,
25 mmol of phenylisocyanate was added. After 30 min at room temperature the reaction
mixture was poured in 250 mL of 2 N HCl at 0 ◦C to give a precipitate that was filtered and
washed with cool water.

3.1.1. 2-Hydroxy-4,4-dimethyl-6-oxo-N-phenylcyclohex-1-ene-1-carboxamide (20)

White solid (44%); m.p.: 87–89 ◦C. (Lit: 84–85 ◦C) [24]. IR (KBr, cm−1): 3327, 3281,
1649, 1595, 1556, 1498, 1448, 1315, 1233, 754, 697; 1H NMR (500 MHz, CDCl3) δ (ppm): 11.77
(s, 1H), 7.56 (d, J = 7.9 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 2.53 (s, 2H),
2.41 (s, 2H), 1.11 (s, 6H).

3.1.2. 5-(Hydroxy(phenylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (21)

White solid (90%); m.p.: 102–104 ◦C. (Lit: 109–110 ◦C) [24]. IR (KBr, cm−1): 3436, 3067,
1693, 1638, 1426, 1336, 1264, 1223, 1095, 924, 802, 758; 1H NMR (500 MHz, CDCl3) δ (ppm):
11.16 (s, 1H), 7.46 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 7.9 Hz, 2H), 7.27–7.25 (m, 1H), 1.77 (s, 6H);
13C RNMR (101 MHz, CDCl3) δ (ppm): 169.30 (C), 135.02 (C), 129.54 (CH), 126.71 (CH),
122.41 (CH), 105.31 (C), 73.87 (C), 26.50 (CH3).

3.2. Enol-Ugi Reactions of 2-Hydroxy-4,4-dimethyl-6-oxo-N-phenylcyclohex-1-ene-1-
carboxamide (20)

To a solution of 1 mmol of imine 22 in 1 mL of methanol, 1 mmol of isocyanide 4 and
0.5 mmol of enol 20 were added successively. The reaction mixture was stirred at room
temperature for 48 h. Then 10% HCl (1 mL) was added, the mixture was washed with
H2O (20 mL), extracted with CH2Cl2 (3 × 20 mL) and dried over Na2SO4. Removal of the
solvent and purification by column chromatography (SiO2, gradient from 100% hexanes to
hexanes–EtOAc, 6:6) gave the corresponding enamines 24a–b.

3.2.1. 2-((2-(Cyclohexylamino)-2-oxo-1-phenylethyl)(phenyl)amino)-4,4-dimethyl-6-oxo-
N-phenylcyclohex-1-ene-1-carboxamide (24a)

White solid (26%); m.p.: 160–162 ◦C. IR (KBr, cm−1): 3430, 3197, 3034, 2931, 2851, 1657,
1594, 1541, 1496, 1445, 1385, 1318, 1091, 747, 699; 1H NMR (500 MHz, CDCl3) δ (ppm):
9.97 (s, 1H), 8.54 (bs, 1H), 7.30 7.15 (m, 6H), 7.14 7.07 (m, 3H), 7.05 6.95 (m, 5H), 6.90 6.84 (m,
1H), 6.29 (s, 1H), 3.95 3.82 (m, 1H), 2.70 (dd, J = 17.7, 7.5 Hz, 2H), 2.38 (dd, J = 17.6, 7.5 Hz,
2H), 2.06–1.55 (m, 5H), 1.40–1.11 (m, 5H), 1,16 (s, 3H), 1.09 (s, 3H); 13C RNMR (126 MHz,
CDCl3) δ (ppm): 196.31 (C), 171.49 (C), 167.86 (C), 163.64 (C), 143.54 (C), 138.31 (C), 134.37 (C),
130.21 (CH), 128.61 (CH), 128.23 (CH), 128.20 (CH), 128.00 (CH), 127.88 (CH), 126.33 (CH),
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123.67 (CH), 120.46 (CH), 112.86 (C), 69.13 (CH), 50.75 (CH2), 49.35 (CH), 45.61 (CH2), 32.91
(CH2), 32.72 (CH2), 30.95 (C), 29.33 (CH3), 27.66 (CH3), 25.44 (CH2), 25.18 (CH2), 25.13 (CH2).

3.2.2. 2-(Benzyl(2-(cyclohexylamino)-2-oxo-1-phenylethyl)amino)-4,4-dimethyl-6-oxo-N-
phenylcyclohex-1-ene-1-carboxamide (24b)

White solid (30%); m.p.: 154–156 ◦C. IR (KBr, cm−1): 3426, 3113, 3038, 2934, 2851, 1659,
1590, 1541, 1493, 1447, 1312, 1116, 750, 697; 1H NMR (500 MHz, CDCl3) δ (ppm): 11.18 (s, 1H),
9.09 (bs, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.35 (t, J = 7.8 Hz, 3H), 7.30–7.20 (m, 3H), 7.15–7.04 (m,
4H), 6.69 (bs, 2H), 5.72 (s, 1H), 4.75 (d, J = 16.0 Hz, 1H), 4.49 (d, J = 16.1 Hz, 1H), 3.86–3.72
(m, 1H), 2.82 (d, J = 17.5 Hz, 1H), 2.67 (d, J = 17.8 Hz, 1H), 2.23 (q, J = 16.0 Hz, 2H), 1.99–1.56
(m, 5H), 1.45–1.02 (m, 5H), 1.09 (s, 3H), 1.06 (s, 3H); 13C RNMR (126 MHz, CDCl3) δ (ppm):
196.26 (C), 174.00 (C), 168.36 (C), 164.03 (C), 138.92 (C), 136.79 (C), 134.23 (C), 130.26 (CH),
129.00 (CH), 128.97 (CH), 128.77 (CH), 128.40 (CH), 127.38 (CH), 126.64 (CH), 123.87 (CH),
120.54 (CH), 108.66 (C), 70.21 (CH), 50.72 (CH2), 49.15 (CH), 45.64 (CH2), 32.73 (CH2), 32.69
(CH2), 29.99 (C), 29.78 (CH2), 29.44 (CH2), 27.44 (CH3), 25.57 (CH2), 25.04 (CH2).

3.3. Five Component Condensation of of 5-(Hydroxy(phenylamino)methylene)-2,2-dimethyl-1,3-
dioxane-4,6-dione (21)

To a solution of 0.5 mmol of imine 22 in 0.5 mL of propan-2-ol, 0.5 mmol of isocyanide
4 and 0.5 mmol of enol 21 were added successively. The reaction mixture was stirred at
25–30 ◦C for 3–5 days. The reaction mixture was cooled at 0 ◦C, filtered and washed with
propan-2-ol and cyclohexane, to give the products 27a–c.

3.3.1. Isopropyl 3-((2-(tert-Butylamino)-2-oxo-1-phenylethyl)(phenyl)amino)-3-oxo-2-
(phenylcarbamoyl)propanoate (27a)

White solid (19%); m.p.: 166–168 ◦C. IR (KBr, cm−1): 3312, 2976, 1747, 1693, 1654, 1602,
1556, 1493, 1445, 1355, 1336, 1106, 752, 707; 1H NMR (500 MHz, CDCl3) δ (ppm): 9.62 (bs,
1H), 7.66 (d, J = 7.6 Hz, 2H), 7.40–6.92 (m, 13H), 6.62 (sa, 1H), 6.11 (s, 1H), 5.07 (c, J = 6.2 Hz,
1H), 4.33 (s, 1H), 1.38 (s, 9H), 1.28 dd, J = 11.4, 6.3 Hz, 6H); 13C RNMR (101 MHz, CDCl3) δ
(ppm): 168.10 (C), 166.25 (C), 165.68 (C), 161.22 (C), 138.46 (C), 137.85 (C), 133.85 (C), 130.52
(CH), 129.28 (CH), 129.22 (CH), 129.00 (CH), 128.93 (CH), 128.84 (CH), 128.58 (CH), 128.41
(CH), 127.32 (CH), 124.45 (CH), 120.38 (CH), 119.06 (CH), 113.90 (CH), 70.37 (CH), 66.10
(CH), 58.84 (CH), 52.00 (C), 28.66 (CH3), 21.71 (CH3), 21.61 (CH3); MS (QI) m/z (%): 530
(M+. +1, <5), 426 (6), 397 (25), 303 (21), 280 (6), 247 (7), 182 (100).

3.3.2. Isopropyl 3-(Benzyl(2-(cyclohexylamino)-2-oxo-1-phenylethyl)amino)-3-oxo-2-
(phenylcarbamoyl)propanoate (27b)

White solid (24%); m.p.: 158–161 ◦C. IR (KBr, cm−1): 3426, 3282, 3089, 3066, 2932, 2856,
1743, 1697, 1656, 1632, 1602, 1556, 1499, 1448, 1132, 1110, 750, 699; 1H NMR (500 MHz,
CDCl3) δ (ppm): 9.86 (bs, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.38–7.28 (m, 4H), 7.24–7.19 (m,
3H), 7.18–7.10 (m, 4H), 7.02–6.92 (m, 2H), 6.32 (d, J = 8.2 Hz, 1H), 6.11 (s, 1H), 5.12 (d,
J = 17.9 Hz, 1H), 5.06 (q, J = 6.4 Hz, 1H), 4.59 (s, 1H), 4.53 (d, J = 17.9 Hz, 1H), 3.87–3.77 (m,
1H), 1.98–1.55 (m, 5H), 1.30 (d, J = 6.2 Hz, 3H), 1.21 (d, J = 6.2 Hz, 3H), 1.41–0.99 (m, 5H);13C
RNMR (126 MHz, CDCl3) δ (ppm) (mixture of two diastereoisomers): 167.71 (C), 167.53 (C),
167.35 (C), 167.27 (C), 166.59 (C), 165.73 (C), 161.95 (C), 161.05 (C), 137.71 (C), 137.46 (C),
136.30 (C), 135.79 (C), 134.45 (C), 134.35 (C), 130.41 (CH), 129.64 (CH), 129.03 (CH), 128.84
(CH), 128.76 (CH), 128.51 (CH), 128.10 (CH), 127.82 (CH), 127.74 (CH), 127.42 (CH), 126.72
(CH), 126.29 (CH), 125.01 (CH), 124.69 (CH), 120.62 (CH), 120.42 (CH), 71.03 (CH), 70.79
(CH), 65.14 (CH), 63.94 (CH), 58.16 (CH), 57.24 (CH), 51.65 (CH2), 50.23 (CH2), 48.97 (CH),
48.81 (CH), 33.03 (CH2), 32.79 (CH2), 25.65 (CH2), 25.59 (CH2), 25.04 (CH2), 24.93 (CH2),
24.85 (CH2), 21.79 (CH3), 21.74 (CH3), 21.68 (CH3), 21.58 (CH3), 21.51 (CH3), 21.48 (CH3).
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3.3.3. Isopropyl 3-((2-((2,6-Dimethylphenyl)amino)-2-oxo-1-phenylethyl)(phenyl)amino)-
3-oxo-2-(phenylcarbamoyl)propanoate (27c)

White solid (40%); m.p.: 173–175 ◦C. IR (KBr, cm−1): 3247, 3064, 2977, 1745, 1696, 1667,
1600, 1550, 1492, 1445, 1359, 1281, 1188, 1104, 697; 1H NMR (500 MHz, CDCl3) δ (ppm): 9.66
(bs, 1H), 7.78 (bs, 1H), 7.57 (d, J = 7.4 Hz, 2H), 7.45 (s, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.27–7.19
(m, 7H), 7.16–7.03 (m, 5H), 6.67 (bs, 1H), 6.42 (s, 1H), 5.07 (q, J = 6.2 Hz, 1H), 4.40 (s, 1H),
2.21 (s, 6H), 1.28 (dd, J = 11.5, 6.3 Hz, 6H);13C RNMR (101 MHz, CDCl3) δ (ppm): 167.19 (C),
166.54 (C), 165.63 (C), 161.09 (C), 135.60 (C), 133.81 (C), 133.08 (C), 130.66 (CH), 129.38 (CH),
129.33 (CH), 129.06 (CH), 128.56 (CH), 128.28 (CH), 128.21 (CH), 127.38 (CH), 127.36 (CH),
124.57 (CH), 120.34 (CH), 114.16 (CH), 70.61 (CH), 66.03 (CH), 58.38 (CH), 21.61 (CH3),
21.50 (CH3), 18.55 (CH3); MS (QI) m/z (%): 578 (M + 1, <5), 331 (23), 248 (11), 149 (100).

4. Conclusions

Amide-stabilized enols have been used for the first time in a condensation with imines
and isocyanides to selectively give four- or five-component adducts. These results prove
the utility of enols containing conjugated electron-withdrawing groups as effective reagents
in isocyanide-based multicomponent reactions. This methodology constitutes an efficient
method for the direct synthesis of diverse retropeptidic subunits.
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