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Abstract: Ultrasound-assisted extraction (UAE) is a novel methodology, belonging to the so-called
“Green Chemistry”, which has gained interest in recent years due to the potential to recover bioactive
compounds, especially those from plant matrices. It is widely recognized that the extraction of
molecules by UAE gives rise to higher or similar yields than those obtained by traditional extraction
methods. UAE has certain advantages inherent to Green Chemistry extraction methods, such as
short extraction time and low solvent consumption. The aim of this review is to critically present
the different variables and parameters that can be modified in UAE, such as ultrasound power, time,
temperature, solvent, and solid to solvent ratio that influence yield and extraction performance.

Keywords: ultrasound-assisted extraction; critical variables; power; temperature; time; solvent

1. Introduction

Ultrasound-assisted extraction (UAE) is a technique that belongs to the group of novel
extraction methods, together with microwave assisted extraction (MAE), enzyme assisted
extraction (EAE) or high-pressure assisted extraction (HPAE) [1,2]. UAE promotes the
extraction of compounds of interest, lowering the consumption of resources, such as solvent
and energy, whereas achieving remarkably higher extraction yields [3,4]. In addition, UAE
is a multipurpose method that lends itself to be combined with other extraction methods,
both conventional and novel [5]. UAE has been applied to obtain extracts rich in bioactive
compounds, such as phenolic compounds, pigments, polysaccharides, and amino acids,
among others from plant matrices [1,3,6,7].

This methodology is based on the principle of cavitation, which leads to cell collapse
of the matrix and allows the release of their inner substances. Several variables are relevant
for the performance of UAE, including the solid–liquid ratio, the type of solvents used,
the extraction time and the ultrasound power applied. Besides, ultrasound power and
extraction time are closely linked to a fifth important factor, which is temperature. In
practical terms, a correct optimization of these variables is essential to obtain a correct
performance, resulting in a maximal extraction yield. In addition, temperature can affect
the integrity of the bioactive compounds, since most of them are thermolabile. Considering
that high ultrasound power linked to long extraction periods may lead to sample damage,
temperature control is essential for a correct design of the cooling reactor and the optimiza-
tion of UAE extraction protocols. Keeping all this in mind, this critical review is focused on
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the influence of all the variables that affect UAE, to analyze the critical factors involved
in the optimization of this technique. In addition, response surface methodology (RSM)
can be a representative tool to generate meta-models. RSM allows to analyze and optimize
several variables at the same time and minimize the loss of matrices [8,9].

2. Variables Influencing Ultrasound-Assisted Extraction

To obtain good extraction yields, an optimization of the variables that influence
the process is required. Among the variables that affect UAE, there are three types of
parameters, as follows: physical, medium-dependent, and matrix-dependent parameters.
Regarding the first, physical parameters are related to the ultrasonic waves applied during
UAE and the equipment used. In this sense, those attributed to ultrasonic waves are
ultrasound power, frequency, and ultrasound intensity (UI), whereas those related with
ultrasound equipment are extraction time, and shape and size of the ultrasonic reactor.
Medium-dependent parameters are related with the space in which ultrasound waves are
transmitted from the emitting source to the matrix. Solvent properties, temperature and
the presence of gases are examples of medium-dependent parameters. Finally, matrix-
dependent parameters are those that have a significant influence in the extraction of
target compounds and considerably affect the effectiveness of the extraction. Type of
matrix, structure, pre-treatment, particle size, or solid–liquid ratio are examples of those
parameters [3,10]. Therefore, a correct design of the process, optimization of the variables,
and appropriate equipment is needed to obtain extraction yields comparable to those
obtained by the so-called traditional methods [11].

Regarding the ultrasound power, the use of high values usually improves extraction
yields due to the generation of strong shear forces, so it is considered as one of the critical
parameters to be optimized. Furthermore, higher ultrasound power reduces the time of
extraction. For example, a study showed good results of the extraction of β-d glucans at a
high extraction power (590 W), in only 58 min [12]. However, the use of high ultrasound
power without control can overheat the reactor producing degradation of labile compounds
and solvent evaporation [13]. In addition, the higher ultrasound power, the higher UI, so
that when UI reaches the maximum value can produce liquid agitation and the consequent
loss of ultrasound wave and the reduction of cavitation efficiency [14].

Regarding the extraction time, UAE allows to obtain good extraction yields with rela-
tively short processing times (maximum 60 min) since longer times may cause undesirable
changes in the extracted compounds. In this sense, optimized time commonly ranges
between 20–60 min, minimizing the energy consumption and reducing the compounds’
exposure to the process [15]. For example, one study shows that 7.25 min are enough to
extract pigments from annatto seeds [16], while 37 min are needed to extract betacyanin
and betaxanthin in bougainvillea flowers [17]. In the case of amino acid extraction, shorter
extraction time was needed (6 min) [18,19], whereas other authors were able to extract
polysaccharides from purple glutinous rice bran (Oryza sativa) with an extraction time of
20 min at 70 ◦C [20] (Table 1).

The type or polarity of the solvent used is closely linked to the nature of the compounds
to be extracted. In addition, due to current concern for the environment, eco-friendly
solvents are preferred. Predominantly, an aqueous medium is generally chosen for the
extraction of polar compounds used in food matrices, while in the case of other organic
compounds, ethanol, and methanol are usually employed. However, despite the use of
methanol tends to obtain better extraction yields, ethanol is preferably chosen because of its
lower toxicity [10]. For example, distilled water and ethanol are usually used for pigments
extraction, while water is the most common solvent for the extraction of polysaccharides
and amino acids [12,20,21] (Table 1). Furthermore, European Directive 2010/59/EU lists
the solvents that can be used for the extraction of compounds from foodstuffs, as well as
their uses and limitations [22]. In addition to the suitable solubility of the compounds of
interest, it is also important to consider the vapor pressure, the surface tension, and the
viscosity of the solvent, since those may affect cavitation and the extraction yield [3]. The
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solid-to-solvent ratio used for each compound does not follow a certain pattern. It depends
especially on the type of solvent and the matrix used. Table 1 shows that for the extraction
of phenolic compounds, the most used solvent is ethanol and the solid-to-solvent ratio
varies between 0.025 g/mL [23] and 0.1 g/mL [24], whereas ratios vary between from 0.058
g/mL for the extraction of betacyanin and betaxanthin in bougainvillea flowers [17] to 0.14
g/mL for the extraction of a natural pigment from annatto seeds [16].

Finally, high extraction temperatures not only affect the extraction yield but could
also have negative effects due to the possible degradation of thermolabile compounds [14].
For this reason, the cooling system must allow the extraction of compounds avoiding the
overheating of the medium by controlling the temperature of the system. For example, it is
possible to extract phenolic compounds with temperatures up to 75 ◦C, β-d glucans at 81
◦C or amino acids at 70 ◦C with optimal yields [12,18,25]. The increase in the temperature
caused by the ultrasound probe itself is fundamentally produced when high ultrasound
power is applied. The temperature increase produces a decrease in both viscosity and
surface tension and induces an increase in the vapor pressure. Thus, too high temperatures
can be harmful for the propagation of ultrasounds through the medium [13]. For these
reasons, the optimization of the extraction temperature must be focused on both protecting
the structure and function of the target components and improving the extractive properties
of the solvent. Generally, the temperature does not exceed 80 ◦C, and it commonly works
around 50 ◦C (Table 1).

Table 1. Optimized extraction conditions for phenolic acids, pigments, polysaccharides, and amino acids from different
vegetal matrices by UAE.

Compounds Matrix Solvent Type and Ratio Optimized Parameters Ref.

TFC Blueberry pomace EtOH/water 50%/50%; 0.05
g/mL ET: 60 min; UPA: 64 W; T: 40 ◦C [24]

TFC Zea mays waste EtOH/water 70%/30% 0.09
g/mL ET: 40 min; UPA: 50 W; T: ND [23]

Stilbenes Grape canes EtOH/water 60%/40% 0.025
g/mL ET: 10 min; UPA: 200 W; T: 75 ◦C [25]

Anthocyanins Grape skins EtOH 60% acidified pH = 3;
0.033 g/mL ET: 28 min; UPA: 400 W; T: 50 ◦C [26]

Natural pigment Annatto seeds
Dw, previously treated with

chloroform/ratio solid solvent
0.14 g/mL

ET: 7.25 min; UPA: 200 W; T:
72.7 ◦C. (Duty cycle of 0.8 s) [16]

Betacyanin and
betaxanthin

Bougainvillea glabra
flowers Distilled water 100% 0.058 g/mL ET: 37 min; UPA: 88 W; T: 55 ◦C [17]

Natural yellow
pigment Physalis pubescens L. EtOH 75% 0.083 g/mL ET: 14 min; UPA: 180 W; T: ND;

ultrasonic interval time of 10.55 s [27]

B-d-glucan Ganoderma lucidum Distilled water 0.00004 g of
fiber/mL ET: 58 min; UPA: 590 W; T: 81 ◦C [12]

Polysaccharides Oryza sativa L. Distilled water 0.05 g/mL ET: 20 min; UPA: 150 W; T: 70 ◦C [20]

PSMP Perilla seed meal Distilled water 0.038 g/mL ET: 52 min; UPA: 229 W; T: 43 ◦C [21]

Amino acids Grapes Distilled water 0.1 g/mL to 0.05
g/mL not significant differences ET: 6 min; UPA: 140 W; T: 70 ◦C [19]

Amino acids Apocynum venetum Distilled water 0.00047 g/mL ET: 32 min; UPA: 187 W; T: NI [18]

Abbreviations: TFC: total flavonoid content. UPA: ultrasonic power amplitude. T: temperature; ET: extraction time; PSMP: perilla seed
meal polysaccharides; NI: not included; Dw: dry weight.
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3. Conclusions

UAE is a useful method for obtaining different compounds of interest from plant
matrices, since remarkably higher extraction yields are obtained with short extraction
times. This extraction method belongs to “Green Chemistry” because it allows to decrease
the consumption of resources, such as solvent and energy. However, it is still necessary
to optimize the more relevant variables that influence the effectiveness of UAE, such as
ultrasound power, extraction time and temperature, type of solvent, and solid-to-solvent
ratio. Different studies have shown extraction yields of different bioactive compounds,
such as phenolic compounds, polysaccharides, pigments, and amino acids, using UAE
with short extraction times (maximum 60 min), medium ultrasound power (between
200–500 W), temperatures around 50 ◦C (maximum 80 ◦C), and environmentally friendly
solvents (distilled water and ethanol). Therefore, UAE can be appropriately applied to
obtain bioactive compounds through an efficient and eco-friendly process, considering and
optimizing the different critical variables that affect the process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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