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Abstract: Mycotoxins are the toxic secondary metabolites naturally produced by fungi; their contam-
ination in agricultural products and food severely threatens food safety and public health worldwide.
The reliable, efficient, and sensitive quantification of mycotoxins in food has become increasingly
challenging to tackle due to the complexity of food matrices and their low level. Visual detection has
emerged as a popular trend toward miniaturization and simplification of mycotoxins assays yet is
constrained with their limited sensitivity. This review mainly focuses on the various sensitive visual
immunoassays for signal amplified detection of mycotoxins. These signal amplified immunoassays
for the improved sensitivity of mycotoxins detection in food through nanomaterials for encapsu-
lation enzyme, enzyme-mediated nanomaterials as the amplified signal readout, and nanozyme.
Furthermore, the underlying principle and the advantages of visual immunoassays for mycotoxins
have been proposed. And the challenges and perspectives have been proposed to develop improved
efficient visual immunoassays for mycotoxins in food.
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1. Introduction

Mycotoxins are toxic secondary metabolites secreted by fungi under suitable tem-
perature and humidity pre- and/or post-harvest [1–3]. Mycotoxins can affect the quality
and safety of agriculture products, the associated processed foodstuffs, feedstuff, and
animals. Over 400 mycotoxins have recently been identified, the worldwide occurrence of
mycotoxins involving aflatoxin (AF), ochratoxin (OT), zearalenone (ZEN), deoxynivalenol
(DON), fumonisin (FB), and T-2 toxin [4,5]. It is well known that aflatoxin is the represen-
tative mycotoxins, including AFB1, AFB2, AFG1, and AFG2, which has been confirmed
to be immunosuppressive, teratogenic, and mutagenic [6,7]. Meanwhile, AFB1 could be
metabolized into the toxic hydroxyl metabolite of AFM1, which is widespread presence of
milk and dairy products.

Additionally, ZEN with a strong estrogenic effect and OTA with neurotoxicity and hep-
atotoxicity could adversely affect animals and humans. To protect humans from exposure
mycotoxins, strict standards of limiting mycotoxin levels in food and the associated prod-
ucts have been regulated in many countries worldwide [8]. The monitoring of mycotoxins
has been recognized as a significant way to safeguard food safety. However, mycotoxins
detection in food matrices is challenging due to their low levels and complex food matrices.
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Accordingly, it is highly desirable to conduct the effective, reliable and sensitive analytical
strategy for screening mycotoxins in food matrices.

Nowadays, many efforts have been made to detect mycotoxins in food, involving
instrumental analysis [9–13] and immunoassays [14–16]. The instrumental analysis re-
quires expensive, sophisticated instruments, a time-consuming sample preparation process,
and well-trained staff, which is not suitable for rapid screening numerous samples, and
precludes their wide application in resource-constrained regions [17]. Immunoassays have
been extensively identified as promising specific recognition for quantifying mycotoxins
thanks to their sensitivity, on-site, as well as high-throughput screening capability. The spe-
cific recognition interaction between antibody and antigen has generally favored highly se-
lective and reliable monitoring of mycotoxins. Various signal transduction techniques have
currently been utilized to conduct mycotoxins immunoassays, such as fluorescence [18–20],
electrochemistry [21–24], chemiluminescence [25], and colorimetry [26–28]. Attractively,
visual detection, a popular trend toward miniaturization and simplification analysis, is
capable of directly observing the results by the naked eye without other sophisticated
instruments [29–31].

Currently, various immunoassays involving enzyme-linked immunosorbent assay
(ELISA) [32,33], lateral flow immunoassay (LFI) [34–37] have been demonstrated as an ex-
cellent platform for discrimination of mycotoxins. Among them, ELISA and LFI served as
the representative visual immunoassay, have attracted continuous interest due to their ad-
vantages of simple, and on-sites for rapid screening mycotoxins. Yet, the sensitivity of these
conventional visual detection methods require improvement to monitor trace amounts
of mycotoxins in complex food matrices. Thus, numerous studies have currently been
devoted to the construction of the visualized immunoassays for enhancing the sensitivity
of mycotoxins detection via signal amplification.

Recently, the robust enzyme catalytic amplification has been confirmed to enhance the
sensitivity of immunoassays. Particularly, elaborate enzymatic strategies for improving the
limited enzyme amount and the catalytic activity have been engineered as efficient and
sensitive immunoassays for high-performance sensing targeted analytes. The emerging
nanomaterials with unique optical, electrical, magnetic, and catalytic properties provide
new opportunities for improving enzymatic immunoassays [38–42]. More evidence has
revealed that the integration of novel nanomaterials promoted sensitivity improvements
on mycotoxins detection [43–45]. For instance, Au nanoparticles (AuNPs) functionalized
with antibodies, effectively discriminating the immune complex and enzyme to catalytic
reaction substrate, significantly elevated their analytical performance [46–48]. Accord-
ingly, the combination of nanomaterials and enzymatic immunoassays provides a potent
signal amplified platform for highly sensitive and specific rapidly screening of mycotox-
ins. Herein, we summarize the improvements on visual immunoassays of mycotoxins
by integrating nanomaterials and enzymatic signal amplification. The improvements in
sensitivity of mycotoxin in food were emphasized with the assistance of nanomaterials for
encapsulation enzyme, enzyme-mediated nanomaterials as the amplified signal readout,
and nanomaterials for enzyme-mimics. Challenges and outlook of mycotoxin detection
have been proposed to develop improved and efficient visual immunoassays in food.

2. The Signal Amplified Strategies

Natural enzymes, as potent biocatalysts have been widely used in countless labora-
tories, medical and food safety fields thanks to their high catalytic activities, substrate
specificity, good biocompatibility, and wide range of biocatalysis [49,50]. ELISA is a classical
enzyme-based visual immunoassay, which mainly includes the sorbent substrate, immuno-
recognition and enzyme labels. The antigen or antibody serves as sorbent substrate to
immobilize onto the supporting material, enzyme-labeled molecule then immobilized to
sorbent [51]. The sensing principle of ELISA mainly relies on the specific immune reaction
between antibodies and antigens. Generally, after precoating the antibody or antigen on
the sorbent substrate through physical absorption, the antigen or antibody were captured
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via specific immuno-recognition, and further immobilized on the substrate. The enzyme-
labeled antibody would bind to the antigens to form a bioconjugation. Significantly, the
enzyme catalyzes the colorless chromogenic substrate to generate colorimetric output, and
the resultant colorimetric signal is recorded by UV-vis spectrophotometer or microplate
reader to quantify the analyte concentration [52,53]. The sensitivity of ELISA could be
effectively enhanced by improving the absorbent substrate, the recognition element, en-
zyme label, or chromogenic reagent. Among them, natural enzymes represent robust
signal amplification, which has been extensively utilized to develop the highly sensitive
immunoassays for trace level mycotoxins because of the catalytically amplified signal.

The peroxidase activity of horseradish peroxidase (HRP) has been used in the tra-
ditional ELISA, where HRP served as signal amplification for catalysis H2O2 into hy-
droxyl radical (•OH) that can react with the colorless chromogenic substrate 3,3′,5,5′-
tetramethylbenzidine (TMB), 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)
or o-phenylenediamine (OPD) into blue TMBox, green ABTS+•, or yellow OPDox under
acidic condition. The colorimetric signal intensity is associated with the anchored HRP-
labeled antigen or antibody for catalysis chromogenic substrates [54]. Accordingly, the
analytes can be quantified through a direct method or an enzyme-labeled secondary anti-
body. In the previous studies, HRP-labeled antibodies were the most commonly used in the
traditional ELISA to realize the various mycotoxin detection in foods [55–59]. The aforemen-
tioned ELISA adopted enzyme-labeled secondary antibodies through chemical conjugation
to generate a signal. Yet, the chemical conjugation of the enzyme might result in the loss of
enzyme activity, low stability for reagents labeling, and decreased sensitivity and specificity
of the ELISA [60]. More evidence was revealed that the fusion protein had been recognized
as an immunological agent for mycotoxins detection since its good antigen binding and
enzyme activity. A nanobody-alkaline phosphatase (ALP) fusion protein has been revealed
to improve the sensitivity for FB1 and OTA detection in argo-products [61–63].

Note that the enzyme-labeled antigen or antibody revealed the limited enzyme
molecules. For instance, HRP-labeled conjugate always presented the limited HRP molecules
with approximately 2–3 HRP per antibody [64], which remarkably weakened the enzymatic
signal amplification and the sensitivity of immunoassays. Besides the limited enzyme
molecules, the low economy of the conjugated enzyme might lead to an increase the
production cost of the immunoassays [65,66]. Meanwhile, enzyme-label is susceptible to
decreasing or even losing catalytic activity upon practical detection [67]. Thus, the efficient
strategies of augmenting enzyme amounts contribute to amplifying the sensitivity of visual
immunoassay. Various enzymatic signal amplification immunoassays using nanomaterials
as a robust scaffold for enzyme immobilization, enzyme-mediated nanomaterials for am-
plified signal readout, and nanozyme as an alternative for natural enzyme have recently
been used to improve the enzyme loading and catalytic activity.

2.1. Immobilized Natural Enzymes on Nanomaterials for Amplification

Increasing the enzyme amounts in the final antigen–antibody–enzyme complex facili-
tates the catalysis of the substrate and signal amplification in a single recognition reaction
(Figure 1A). Attractively, nanomaterials can execute as excellent carriers for loading and
immobilizing enzymes by virtue of their large surface area-to-volume ratio, high loading
capacity, facile fabrication, ease of functionalization, and high chemical stability. The mul-
tienzymes and antibodies immobilized on the surface of a single nanomaterial to effectively
amplify the detectable signal, and thus enhance the sensitivity [68]. The emerging nanoma-
terials of metal/metal oxides nanoparticles, silica nanoparticles [69], carbon nanomaterials,
and metal-organic frameworks have been demonstrated as excellent carriers for immobiliz-
ing natural enzymes for sensitive analysis. For instance, Zhu et al. utilized botryoid-shaped
Au/Ag nanoparticles (BSNPs) loading HRP–IgG to construct indirect competitive ELISA
for amplified ochratoxin A (OTA) detection in four wheat samples. After precoating the
OTA-OVA antigen, the analyte of OTA was introduced as a competing component, fol-
lowed by the addition of an anti-OTA antibody. Thus HRP-IgG-BSNPs complex was used
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as the enzyme-labeled secondary antibody for catalysis colorless TMB into blue oxidized
TMB with the assistance of H2O2. And the colorimetric intensity was recorded by a mi-
croplate reader to examine the OTA level. The high loading amount of HRP–IgG onto the
BSNPs contributed to improved sensitivity of OTA with the IC50 of 0.05 ng/mL, which
revealed a 30-fold improvement compared to the conventional ELISA [70].
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Figure 1. (A) The improved immunoassays using nanomaterials for immobilization natural enzymes.
(B) AuNPs-HRP-goat anti-mouse IgA enhanced ELISA for FB1. Reprinted from ref. [71]. Copyright
2018 Royal Society of Chemistry. (C) Zeolitic imidazolate framework-encapsulated HRP-based
ELISA for ZEN. Reprinted from ref. [72]. Copyright 2021 Elsevier. (D) SiO2 NPs carrying poly
(acrylic acid)@CAT-based ELISA for OTA. Reprinted from ref. [73]. Copyright 2016 American
Chemical Society.

Similarly, Li et al. [71] developed an indirect competitive ELISA for the total FB1, FB2,
and FB3 detection in maize samples based on AuNPs immobilized HRP-goat anti-mouse
IgA. The enhanced sensitivity was approximately ten times compared to the conventional
ELISA (Figure 1B). Liu et al. [72] developed metal-organic frameworks (MOFs)-loaded
HRP and goat anti-mouse IgG for ZEN detection in argo-products. The LOD of this im-
munoassay achieved 0.5 ng/L for ZEN detection, which showed an approximately 126-fold
enhancement relative to conventional HRP-based immunoassay (Figure 1C). Besides single
nanomaterials, polymer-coated nanomaterials as enzyme containers have demonstrated to
be the amplified strategies of conventional nanomaterials for further elevating the enzyme
loading capacity of nanomaterials. Xiong’s group presented that SiO2 NPs carrying poly
(acrylic acid) (PAA) brushes as a “CAT container” were used to amplify the sensitivity of
OTA in various argo-products [73]. In this case, the SiO2@PAA@CAT could generate a
signal amplification for plasmonic ELISA by using catalase (CAT)-catalyzed the changed
plasmonic signal readout of AuNPs. The LOD by naked eye and microplate reader was
10−18 and 5 × 10−20 g/mL, which was seven and eight orders of magnitude lower than
that of CAT-based ELISA (10−11 g/mL by the naked eye) and HRP-based conventional
ELISA (10−11 g/mL by the microplate reader) (Figure 1D).
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2.2. Natural Enzyme-Mediated Nanomaterials for Amplified Signal Readout

In addition to the typical chromogenic substrate, natural enzyme-catalyzed products
enable to regulate the color change of nanomaterials, especially for plasmonic property of
AuNPs, achieving the visual detection of mycotoxins (Figure 2A). For instance, Xiong’s
group [74] developed a direct competitive ELISA through CAT-mediated AuNPs aggrega-
tion using HRP + H2O2 + tyramine system. In this case, phenol polymerization of tyramine
by •OH from HRP-catalyzed H2O2 triggered AuNPs aggregation. The competitive antigen
of OTA-labeled CAT was employed to catalyze H2O2 into H2O and O2. AuNPs presented
monodisperse (red) without OTA, while the AuNPs aggregation (blue) was observed with
OTA, and the extinction spectra of AuNPs were used as the signal recorder. The combined
advantages of ultrahigh CAT catalytic activity and color change of AuNPs contributed
to sensitively detecting OTA in corn samples. The IC50 and LOD (IC10) of OTA were
84.75 and 17.8 pg/mL, which revealed a 2.9- and 2.7-fold enhancement compared with the
conventional ELISA (Figure 2B).

Meanwhile, this group also utilized the glucose oxidase (GOx) -catalyzed glucose
into H2O2, which reduces Au3+ into Au0 on the surface of Au seeds with an obvious
color change for a direct competitive ELISA for FB1 detection in maize samples. The
IC50 was 1.86 ng/mL, approximately 13-fold lower than that of HRP-based conventional
ELISA [75]. Apart from AuNPs, enzyme-assisted etching of Au nanorods (NRs) triggered
visual detection of mycotoxins. HRP-assisted AuNRs-etching direct competitive ELISA
was developed to sensitively detect AFB1 in corn samples. The competitive antigen of
AFB1-labeled GOx could catalyze glucose molecules into H2O2, and HRP simultaneously
catalyze H2O2 to form •OH. The rod-like morphology AuNRs was chemically etched to
spherical morphology by •OH, leading to visual signal output. The etching process of
AuNRs efficiently occurred without AFB1, yet the blocking of AuNRs etching was clearly
presented in the presence of AFB1. The decreased optical density and the apparent color
change from bluish-green to red were collected by a microplate reader or the naked eye
for qualitative AFB1 detection. The method allowed sensitive determination of AFB1 with
IC50 of 22.3 pg/mL, which enhanced 32 times compared to the traditional ELISA [76].

Although these approaches achieved superior sensitivity, most of them rely on tradi-
tional single-signal readout mode. And these strategies might encounter the limitation of
inaccuracy for mycotoxins evaluation, which was partly ascribed to external interferences,
such as nonstandard test processes, different operators, or diverse surrounding environ-
ments [77–79]. Recent development in mycotoxins immunoassays enable the integration
of visual and various signal transduction techniques into dual-signal strategies, and thus
offering multi models for mycotoxins detection because of their self-calibration. Typically,
by using the changed multiple color and LSPR shifts of Au nanobipyramids etched by •OH
generated from HRP-catalyzed H2O2, and the changed photocurrent of CdS etched by the
oxidized HRP. Wei et al. [80] developed an improved colorimetric and photoelectrometric
immunoassay for ochratoxins (Figure 2C). The nanoliposomes as the vehicle for carrying
more secondary antibodies and encapsulating HRP significantly amplified the detection
signal, realizing the simultaneous detection of three ochratoxins (OTA, OTB, and OTC).
The dual-modality immunoassay showed high sensitivity with LOD of 0.7 and 1.7 ng/L for
photoelectrometric and colorimetric readouts, respectively. Attractively, the dual-modality
response immunoassays showed a more accurate and reliable outcome compared with the
single modality.
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2.3. Nanozyme for Signal Amplification

Although natural enzymes are extensively used in various fields, their catalytic ac-
tivities were still susceptible to the extreme environment, e.g., heat, pH, organic solvents,
mechanical stress, heavy metal, etc. Meanwhile, they present many shortcomings, such as
high expense, low recyclability, poor operational stability and limited practical applications,
e.g., the preparation, reaction, and storage requirements [81–83]. Nanomaterials-based
artificial enzymes (nanozyme) have been particularly attractive since the discovery of
Fe3O4 NPs with peroxidase-like activity by Yan’s group in 2007 [84]. Nanozymes are ideal
candidates for alternative natural enzymes due to their high catalytic activity, tunable cat-
alytic activity and types, multienzyme mimetic activity, high stability, low cost, durability
and ease of functionalization [62]. Nowadays, various nanozymes have been served as
catalytic labels for multi-category signal amplification in newly developed immunoassays.
Numerous studies revealed that metal NPs (Au, Ag, Pt, Pd) [85,86], metal oxide NPs
(Fe3O4, CeO2, MnO2, CuO) [87–92], carbon-based (graphene oxide, carbon nitride, carbon
dots) [93–96], and MOFs-based nanomaterials [97–99] with peroxidase-, catalase-, oxidase-,
superoxide dismutase-mimicking properties.

These nanozymes have been designed to amplify the sensing of mycotoxins (Figure 3A).
For example, Xu et al. [100] developed an indirect competitive MOFs -linked immunosor-
bent assay for the high throughput and sensitive detection of AFB1 in grain drinks.
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Peroxidase-like activity of MOFs (MIL-88) was conjugated to a secondary antibody to
substitute natural HRP-labeled secondary antibody. The MOFs-based immunoassay al-
lowed to sensitively detect AFB1 with the LOD of 0.009 ng/L with 20 times improvement
compared to the conventional ELISA. The enhanced sensitivity might arise from their
good dispersity, more active sites, and pores of MOFs-labeled antibodies promoted the
catalytic reaction between MOFs-labeled antibody nanozyme and substrate. Significantly,
the immunoassay could successfully decrease the occurrence of false positives and false
negatives during the detection of AFB1 (Figure 3B).

Furthermore, Zhu et al. [101] developed a competitive ELISA that was constructed to
sensitively monitor OTA in millet samples through octahedral Cu2O nanoparticles etching
of Au nanobipyramids. Peroxidase-mimicking activity of Cu2O could oxidize TMB in the
presence of H2O2, and the yellow product TMB2+ could etch the Au nanobipyramids, trig-
gering a significant longitudinal peak blue shift of local surface plasmon resonance. In this
case, a dopamine-coated microplate was used to capture OTA antigens, and followed by the
immunoreaction between OTA antibodies and the Cu2O-labled secondary antibody. The
growing concentration of OTA resulted in a decrease of Cu2O-labled secondary antibody
amount, further imposing adverse effects on the generation of catalytic product TMB2+

and the etching process of AuNRs (Figure 3C). The method allowed to sensitively detect
OTA with LOD of 0.47 ng/L.

Apart from the single nanozyme for signal amplification, multienzyme-based cas-
cade catalysis is another important signal transduction and amplification strategy. In the
catalytic cascade system, the decreased diffusion path of intermediates between the en-
zymes enables the improvement of unstable intermediates, facilitating their efficiency
and specificity [102–104]. Meanwhile, the single substrate can be converted into more
signal molecule through the multienzyme-associated continuous catalysis reaction and
contributes to the signal amplification [68,83,105]. Lai et al. [105] proposed a competitive
cascade amplified immunoassay for AFB1 detection in peanut samples by a combination of
ascorbate oxidase (AOx)/anti-AFB1 antibody-labeled AuNPs and oxidase-mimics MnO2
(Figure 3D). With the assistance of ascorbic acid (AA), a blue MnO2-TMB system was
converted into a colorless system because of the dissolution of MnO2 into Mn2+. Once
introduced AOx, the color change could be suppressed since AOx catalysis AA to dehy-
droascorbic acid. The cascade signal amplification remarkably improved the sensitivity of
AFB1 with LOD of 6.5 pg/mL, which approximately enhanced 15-, 7-, and 38-fold com-
pared to the existing commercialized AFB1 kits (e.g., QuickingBiotech:100 ppt; Max Signals:
50 pg/mL; MyBioSource: 250 pg/mL). Similarly, Lai further developed a competitive
immunoassay for sensitive screening AFB1 in a peanut sample (LOD: 0.1 ng/mL), based
on the just-in-time generation of an oxidase, mimics MnO2 through the reaction KMnO4
and Mn2+ with the assistance of AOx [106].

Similar to ELISA, LFI is another important visual immunoassay for nanomaterials-
labeled one-step immunochromatographic paper-based point-of-care tests. LFI is widely
used in food safety owing to its low cost, speed, and ease of use [107–109]. The components
of LFI mainly include a sample pad, a nitrocellulose (NC) membrane containing the test
and control zones, conjugate and absorbent pads from cellulose, and a polyvinyl chloride
backing card for assembling the components [110]. Once the sample solution is dropped
onto the sample pad, it can migrate along the strips driven by capillary forces. Then, the
sample dissolves the detection reagent in the conjugation pad, followed by flows along the
strip within the porous membrane, where the analyte and the signal reporter were captured
on the test line, thereby leading to the generation of a detectable signal. The sensing
principle of LFI for analytes mainly includes the competitive and sandwich types. Generally,
the competitive LFI is utilized to analyze mycotoxins due to their low-molecular weight. For
the competitive LFI, the analyte competes with the same molecule, or the analyte blocks the
capture agent attached on reporter tags in conjugation [111,112]. The resultant detectable
signal intensity of the test line decreased upon the growing concentration of mycotoxins.
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For colorimetric LFI, AuNPs are the common signal labeled material for visual out-
put through non-covalent electrostatic adsorption of antibodies or antigens [113]. Au-
nanomaterials-based LFI have been extensively developed for analysis multiplex myco-
toxins including FB1 [114], AFB1 [115], OTA [116], ZEN [117] etc. In addition, natural
enzymes also provide signals through conjugating to mycotoxin-protein and are executed
as the signal transducer to achieve visual detection, such as HRP-labeled antibodies or
/antigen for immunological recognition construction LFI [118,119]. Nowadays, numerous
nanozymes have been used to label antibodies or antigens for rapid visual LFI. The evi-
dence of Fe3O4 nanozyme for enhanced detection Ebola virus with 100 times enhancement
compared to the conventional AuNPs-based LFI, revealing the signal amplification abil-
ity of nanozyme [120]. Various fascinating nanozyme, such as AuPt nanoflowers [121],
Pt nanocatalyst [122], Pt-Ni(OH)2 nanosheets [123], Prussian blue NPs (PBNPs) [124], have
been used to construct LFI, and realized their widely application in food safety. For ex-
ample, Tian et al. developed PBNPs as a marker signal LFI platform for OTA in soybeans
samples. The new signal of PBNPs can be amplified via the TMB cascaded signal. The
colorimetric signal of PBNPs accumulated on the test line through specific immune interac-
tions, triggering the formation of a visible blue line. Meanwhile, the colorimetric signal
could be further amplified via the peroxidase-mimic property of PBNPs. The resultant col-
orimetric images and grey intensity for OTA concentration were collected and analyzed by
a smartphone and software Image J, respectively. This proposed LFI significantly improved
the sensitivity of OTA with 2–3 orders of magnitude relative to commercial AuNPs-based
LFI [125]. Although nanozyme have been extensively applied in food analysis, their poor
substrate specificity, unclear mechanism, lack of standards and reference materials, and
potential toxicity remained the major challenges for their further application.

3. Conclusions and Outlook

Mycotoxin contamination is a continuous global concern for food safety. Visual
immunoassays remain simple, rapid, on-site detection of mycotoxins contamination as an
alternative to traditional sophisticated techniques. The combination between conventional
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visual immunoassays and nanomaterials, novel visual immunoassays tend to be popular
for mycotoxins by using the signal amplified strategies for tackling their inherent limited
sensitivity. The representative immunoassays based on various nanomaterials could
achieve the enhanced sensitive detection of mycotoxins using signal amplified strategies.
Enzyme-immobilized onto nanomaterials, enzyme-mediated nanomaterials for amplified
signal readout, nanozyme for amplifying the sensitivity of mycotoxins detection.

Although the aforementioned sensitive visual immunoassays for mycotoxins have
revealed outstanding analytical performance and a fascinating prospect, many challenges
still need to be tackled.

(1) The visual signal is obtained by the naked eye. Yet, the reliance on manual
observation rather than instrumental measurement might cause large subjective uncer-
tainty, as well as difficulty in quantitative data. The integration of digital technology [126]
(e.g., machine vision) to simulate human visual ability and objective perception, the accu-
rate and reliable results could be easily quantified, and thus reducing subjective errors in
manual observations.

(2) Compared to the traditional immunoassays, the limited reproducibility and stabil-
ity of nanomaterials-based immunoassays is the important obstacle for further application
in food analysis due to their experimental and systemic factors. The standardization of
nanomaterials preparation could effectively guarantee the reproducibility and stability of
nanomaterials-based immunoassays.

(3) Most visual immunoassays are developed for single mycotoxin, while mycotoxins
always co-occurred with the others in actual food samples. Thus, the simultaneous mon-
itoring multi-mycotoxins by combing the multi-recognition elements in immunoassays
facilitate to shorten the required time, save costs and alleviate the required labor.

(4) The integration of the visual analysis technology and multi-analysis technolo-
gies (e.g., magnetic, optical, and thermal properties, etc.), multi-signal immunoassays of
mycotoxins contribute to minimum background signal and false-positive errors.

(5) Further exploiting the smart, automatic, miniaturized detector with the integration
of smartphone, a portable and high-resolution device for the highly sensitive screening of
mycotoxin contamination.
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