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Abstract: Methylmercury (MeHg+) is an important environmental contaminant and its toxicity is 
associated with its interaction with selenium (e.g., selenol groups of selenoproteins or HSe−, which 
is the pivotal metabolite for Se incorporation into selenoproteins). We hypothesized that (PhSe)2 
mediated MeHg+ detoxification could be indirectly altered by its open or closed conformation. The 
two conformations of (PhSe)2 were located on the potential energy surface (PES) computed at 
ZORA-OPBE-D3(BJ)/ZORA-def2-TZVP level of theory. HPLC analysis indicated that (PhSe)2 did 
not react with MeHg+, but its reduced intermediate formed a stable complex with MeHg+. The 
nudged elastic band (NEB) method revealed conformational changes from closed to open state with 
an H− (2 electrons) transfer from NaBH4, forming a reactant complex-like transition state (TS). The 
UV-Vis spectrophotometer used in combination with the time-dependent density functional theory 
(TD-DFT) indicated that the signal of (PhSe)2 at 239 nm was possibly the open conformer’s signal 
with oscillator strength 0.1 and a π → π * electron transfer character. The experimental band gap 
energy of (PhSe)2 at 5.20 eV matched to the excitation energy of the open conformation. The local 
softness (S−) on the selenium atoms almost doubles, as state changes from closed to open. The 
theoretical results have indicated that the open conformation of (PhSe)2 is likely the one that reacts 
with NaBH4 to form the PhSeH, which can react with MeHg+. 
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1. Introduction 

In the aquatic food web, methylmercury (MeHg+) can be biomagnified and can reach toxic levels 
in the edible muscle of predatory or piscivorous fish [1,2]. The frequent consumption of predatory 
fish can result in MeHg+ intoxication [2]. The toxicity of the soft electrophilic MeHg+ is mediated by 
inactivation of proteins containing soft nucleophilic sites (e.g., thiol- and selenol-containing proteins) 
[3–7]. MeHg+ has an extremely high affinity for –SH and –SeH groups [5,8]. Experimental and 
theoretical studies have indicated that the affinity of MeHg+ for –SeH is greater than for –SH groups 
[5]. Selenium (Se) is an essential element for vertebrates as part of the selenol group present in the 
selenocysteine residues found in selenoproteins. In a previous study, we demonstrated that diphenyl 
diselenide (PhSe)2 decreased the deposition of Hg in mice treated with MeHg+. A decreased mercury 
burden in liver, kidney, cerebrum and cerebellum of mouse was reported in mice treated with (PhSe)2 
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[3,4,9]. We have hypothesized that (PhSe)2 could be reduced to its selenol intermediate PhSeH, which 
formed a complex with MeHg+ (i.e., PhSeHgMe) [5,9,10]. The reduction of (PhSe)2 and its eventual 
reaction with methylmercury have several intricate and interesting parts, as reactions may eventually 
depend on the conformation assumed by (PhSe)2 in the reacting medium [11–13]. 

(PhSe)2 presents two conformations in its ground state, referred to as the closed and open 
conformation (Scheme 1) [12,14]. The reduction of (PhSe)2 using NaBH4 involves a hydride transfer 
via a likely single-step mechanism [15], Scheme 2. It has been reported [16] that the hydride transfer 
process is strongly affected by solvent, with the open state acting as the hydride acceptor from the 
NaBH4 donor. A likely mechanism is shown in Scheme 2. 

 
Scheme 1. Closed and open conformation of diphenyl diselenide. 

 

Scheme 2. Diphenyl diselenide reduction by NaBH4. 

The nudged elastic band (NEB) method [17] was used to locate the relevant points on the PES, 
i.e., the minima and transition states. TD-DFT [18] calculations were performed at ZORA-CAM-
B3LYP/zora-def2-TZVP to compute the excitation energies and interpret the experimental spectrum. 
Then, we used the conceptual density functional theory (c-DFT), [19] which involves the use of DFT, 
electron density to unravel the reactivity of chemical systems. Particularly, the Fukui function f(r) 
was computed. This function is the second derivative of energy (E) at a constant external potential, 
derived by perturbing the chemical system from N to N + 1 and N to N − 1 [20]. This function indicates 
the regioselectivity [21], suggesting a region on a molecule where there will be either a nucleophilic 
or electrophilic attack. 

2. Methods 

2.1. Experimental 

A stock solution of 10 mM was prepared by dissolving 19.6 mg of (PhSe)2 in 6.28 mL of 70% 
Acetonitrile, from which 5 µL ((PhSe)2 final concentration of 50 µM) was used in the reaction, same 
concentration applied to NaBH4, DTT and MeHg. The UV absorption spectrum of (PhSe)2 was 
recorded in the region of 220–450 nm with 70% acetonitrile as the solvent using a UV-1800 Shimadzu 
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spectrophotometer (Shimadzu, Kyoto, Japan). Analysis of methylmercury reaction with (PhSe)2 was 
performed using a Shimadzu SPD-20A UV/V is Detector (Shimadzu, Kyoto, Japan). CBM-20A 
communication bus module and DGU-20A5 Degasser prominence high-performance liquid 
chromatography (HPLC) controlled by the LCSolution software system version 1.22 SP1. Detection 
was monitored at 239 nm UV wavelength. The separation was achieved on a VerticalTM VertiSep 
GES C18 HPLC column (4.6 × 150 mm). The mobile phase used for the analysis of the reaction was at 
70% acetonitrile–0.5% phosphoric acid aqueous solution (70:30, v/v) with a flow rate of 0.8 mL/min. 
An injection volume of 50 µL was used. The retention time was approximately 12.5 min for (PhSe)2. 
The peak areas were used for quantification. The estimated void volume is 1.75 mL and at 0.8 mL/min 
flow rate gives 2.19 min. 

2.2. Computational Methods 

All Density Functional Theory (DFT) calculations were done with ORCA 4.1.2 [22,23]. Geometry 
optimizations and vibrational frequencies were performed at ZORA-OPBE-D3(BJ)/ZORA-def2-
TZVP [24,25] level of theory. The Zeroth-order regular approximation (ZORA) was used in order to 
include scalar relativistic effects due to the presence of selenium atom [26] as previously 
benchmarked [11]. In addition, the effect of dispersion was included using Grimme’s approximation 
(D3(BJ)) [27,28]. The FMO (frontier molecular orbitals) energies and related parameters were obtained 
at ZORA-OPBE-D3(BJ)/ZORA-def2-TZVP level. The NEB analysis was carried out at ZORA-OPBE-
D3(BJ)/ZORA-def2-TZVP level. The chemical reactivity descriptors used are the local softness(s), 
global hardness (η) and global softness (S), defined as: η = (IE − EA)/2 and S = 1/(IE − EA) where IE is 
the Ionization Energy which corresponds to the HOMO energy taken with a negative sign and EA is 
the electron affinity which corresponds to the LUMO energy taken with a negative sign. The local 
softness is (s) = S (Global Softness) × f(r) where the Fukui function f(r) [20,29,30] is the second 
derivative of E at a constant external potential. The dual descriptors f(2)(r) > 0 indicate preferable sites 
for nucleophilic attack and f(2)(r) < 0 shows sites for electrophilic attack. The experimental band gap 
energy was obtained by calculating the energy using the Planck–Einstein relationship E(eV) = hc/λ. 
The pkCSM server [31] (http://biosig.unimelb.edu.au/pkcsm/prediction) was used in predicting the 
total clearance (CLtot) of (PhSe)2, MeHg+ and MeHgSePh [32]. 

3. Results 

A reactant-like transition state (TS) geometry with the TS energy closer to the reactant 
complexwhere the open conformer is present. 
The relevant structures of this mechanism are shown in Scheme 3. 

 
Scheme 3. Mechanism of (PhSe)2 reduction. 
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4. Discussion 

The PES scan performed at ZORA-OPBE-D3(BJ)/ZORA-def2-TZVP level of theory across the 
dihedral angle ψ (C-Se-Se-C *, Scheme 1) reveals two minima corresponding to approximately −80 
and +80 degrees (Figure 1). The spikes in the curve correspond to switches in the orientation of the 
phenyl rings converting the open/closed conformations. Solvation brings minimal changes, and the 
two minima are just slightly shifted, while the phenyl rings orientation in correspondence of these 
minima is maintained as in the gas phase. The actual detoxifying of MeHg+ is the selenol metabolite 
obtained from the reduction of (PhSe)2 by two electrons transfer process (Scheme 2, Figure 3, breaking 
the Se-Se bond. The orientation of the phenyl rings is expected to modulate the equilibrium shift, 
either in favor or against the formation of selenol, hence modifying indirectly the detoxification 
process. Hydride transfer process are strongly affected by solvent [16]. The crystallographic structure 
retrieved from the Cambridge Structural Database (CSD) [33,34] is in the closed state. At ZORA-
CAM-B3LYP/zora-def2-TZVP (Figure 3) the modelled spectrum of the open state, matches to the 
experimental spectrum at λmax 238.7 nm, with slight difference of only 0.2 nm. The excitation energy 
of the open state at the same level of theory matches to the experimental band gap energy of 5.2 eV. 
The cDFT result revealed change in susceptibility of diphenyl diselenide in the closed state for 
nucleophilic attacks with the dual descriptor f(2)(r) > 0 (0.032) to electrophilic attacks with f(2)(r) = 
−0.046, with extended bond length of 5%. Change to open state increases the reactivity, with the local 
softness (S-) on the selenium atoms almost doubled. 

 
Figure 1. Potential Energy Surface (PES) scan of (PhSe)2. In gas phase (green line) and in different 
solvents, i.e., chloroform (yellow line) and acetonitrile (pink line); level of theory: ZORA-OPBE-
D3(BJ)/ZORA-def2-TZVP. 
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Figure 2. Computed spectra of the closed and open conformers of (PhSe)2 in gas phase (orange and 
skye blue, respectively) and in different media, i.e. chloroform (light orange and light blue, 
respectively) and acetonitrile (gold and dark blue, respectively) and experimental spectrum recorded 
in acetonitrile (red); level of theory: ZORA-CAM-B3LYP/TZVP. 

 
Figure 3. (A). The chromatogram of (PhSe)2 using VerticalTM VertiSep GES C18 HPLC column (4.6 × 
150 mm) with 70% acetonitrile, 0.5% phosphoric acid aqueous solution (70:30, v/v) mobile phase at a 
flow rate of 0.8 mL/min. (B). Total clearance of the reagents as predicted using pKCSM. 

5. Conclusions 

In this work, we have used both experimental and theoretical approach to identify the reactive 
state of (PhSe)2. We ascribe the experimental absorption of (PhSe)2 at 239 nm to a dominant open state 
with a π → π * electron transfer character. The reaction with MeHg+ was observed to be preceded by 
a reduction reaction. A hydride transfer from NaBH4 to (PhSe)2 open state was postulated and 
confirmed by a NEB profile: a reactant-like transition state (TS) geometry is present leading to selenol 
as the product. This study provides new insight into the study of (PhSe)2 use as a methylmercury 
detoxificant agent. 
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