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Abstract: In the search for the tocopherols structure-reactivity relationship, our calculations showed
that the GAP, which is the difference between the energy values of the frontier orbitals, decreases
during the passage gas/aqueous medium for the isoforms α, β and γ. But it increases for isoform δ.
This means that the latter is less reactive and less soft than the others in aqueous medium. On the
other hand, the chemical descriptors calculations revealed that the transfer of electrons takes place in
the direction α < β < γ < δ in the gas state and aqueous medium.
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1. Introduction

Discovered in 1922 by Evans and Bishop [1], vitamin E is a product found in plants,
vegetable oils and certain foods. These products can be tocopherols or tocotrienols. The
antioxidant power of tocopherols results in the transfer of the hydroxyl’s protons from its
systems to ROO• peroxized radicals and inhibits the radical propagation chain in a lipid
environment [2]. Thus, it is the chromanol group that prevents the process of harmful
peroxidations [3]. Reports indicate that there are conflicting results in clinical studies
on the regulation of vitamin E (isoform α-) of allergic inflammation. They also strongly
recommend considering dietary intake of tocopherols as isoform γ- is more abundant
in Western diets [4]. On the other hand, the reverse phase HPLC technique does not
distinguish between the two isomers β- and γ- but it has been widely used [5] as if the
majority of vegetable oils were devoid of β-tocopherol [6]. This is why we are involved in
the study of the structures and properties of tocopherols. There are four systems that differ
in sites and number of methyl substituents on the chromanol ring. Named: α-, β-, γ- and
δ-tocopherol isoforms. Knowing that the separation of these isoforms and their studies is
of increasing interest to researchers [6–11] (Figure 1).
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2. Methods

Given the size of our systems, we calculated the structures using the PM3 [12] semi-
empiric parametrization and B3Lyp/6-31G* method for the four tocopherols (α-, β-, γ-
and δ-). Molecular orbitals of the optimized systems were obtained using the program
implemented NBO [13] in Gaussian09 [14]. Semi-empirical calculations were performed
with HyperChem [15].

Density functional theory (DFT) has been shown to be effective in providing theo-
retical information on chemical reactivity and selectivity in terms of qualitative chemical
concepts such as electronegativity (χ), hardness (η), softness (S), electrophilic index (ω).
The ionization potential is defined by the amount of energy required to remove an electron
from a molecule. The latter is related to the energy of the highest occupied molecular orbital
(HOMO) according to the equation: I = −EHOMO. On the other hand, electron affinity is
defined as the energy released when a proton is added to a system. It is related to the
energy of the lowest unoccupied molecular orbital (LUMO) by the equation: A = −ELUMO.

Based on the calculated values of the electronic potential and the electronic affinity,
the values of electronegativity (χ), chemical potential (µ), chemical hardness (η), chemical
smoothness (S) and electrophilic index (ω) were determined.

3. Results
3.1. Structures

The structures obtained from the B3Lyp/6-31G* calculations are shown in Figure 2.
The imaginary frequencies are not present in the frequency calculation analysis of the
optimized structures. Given the aromaticity of the chromanol ring, it is almost flat except
for the part surrounded by atom C(2) and atom C(4). It is slightly flexible. The comparison
of the main dihedral angles generated by the three atoms C(2), C(3) and C(4) showed that
the results obtained with PM3 are reachable. The angles obtained at B3Lyp/6-31G* are
identical to those obtained by Fabijanic and col. [16] using B3Lyp/6-311+++G**. This shows
that such extensive basic choice is not necessary (Figure 3, Table 1).
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Table 1. The tocopherols dihedral angles of the optimized structures expressed in◦.

Isoforms Level C(5)-C(4)-C(3)-C(2) 1 C(4)-C(3)-C(2)-C(17) 1 C(4)-C(3)-C(2)-C(13) 1

α

B3Lyp/6-31G* 43.2 −171.7 61.0
PM3 42.5 −172.8 62.9
B3LYP/6-311++G** [16] 43.1 −171.7 61.0
B3LYP/6-311++G** [16] −43.9 −60.0 172.8

β
DFT 44.1 −171.3 61.3
PM3 43.8 −172.1 63.9

γ
DFT 44.7 −171.7 61.2
PM3 44.0 −172.9 63.8

δ
DFT 45.8 −171.9 61.0
PM3 44.7 −172.9 63.9

1 See Figure 3.

The calculated energies of the optimized structures with the PM3 method show that
the isoform γ- is less stable than the isoform β- of 19.945 Kcal/mol. This is probably due to
steric discomfort generated by the adjacent positions of methyls on the chromanol ring of
isoform γ-. Unlike energy calculations, thermodynamic calculations favor isoform γ- over
isoform β-. The free energy difference is estimated at 376.0 Kcal/mol.

3.2. Dipolar Moment

Isoform α- has the lowest dipolar moment value and the highest polarizability. For
the others, the dipolar moment values remain close. They vary in the same direction as
those obtained in PM3. The difference between the values of isoform α- and those of the
others is probably due to the presence of hydrogen on the aromatic ring of β-, δ- and γ- one
and their absence on that of the first (see Table 2 and Figure 1).

Table 2. Calculated values of the dipolar moment expressed in Debye.

System α-Tocopherol β-Tocopherol γ-Tocopherol δ-Tocopherol

DFT 1 0.80 0.99 1.02 1.19
DFT 2 0.95 1.25 1.13 1.37
PM3 0.68 0.95 0.97 0.98

1 Gas, 2 aqueous solution.

3.3. Reactivity

The value of the GAP decreases slightly (about 0.0020 eV) during the transition from
gas to aqueous medium for the isoforms α-, β- and γ-. On the other hand, it increases
for isoform δ-. A molecule with a small gap is generally associated with high chemical
reactivity and low kinetic stability. From this point of view, the first three systems are more
reactive in aqueous solution, which makes them softer than the last tocopherol (Table 3).

Table 3. GAP values expressed in eV.

System α-Tocopherol β-Tocopherol γ-Tocopherol δ-Tocopherol

Gas 0.1948 0.1969 0.1950 0.1928
water 0.1928 0.1947 0.1925 0.1946

Our results show that the variation of the electronic chemical potential of tocopherols
in both media is in this direction: α > β > γ > δ, and the electron transfer is in the opposite
direction. The electronegativity values confirm these results. The δ-tocopherol is the most
electronegative because of the presence of two hydrogen atoms on the aromatic ring instead
of the methyl radicals of the α-tocopherol. A difference in electronegativity is clearly visible
for the isoforms β- and γ-. The position of the Hydrogen atom has a significant influence
on the electronegativity value.
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Chemical hardness is associated with the stability and reactivity of a chemical system.
It measures resistance to change in electron distribution or charge transfer. The values of η
show that the isoforms α and γ remain almost identical in hardness. On the other hand,
β-tocopherol is harder, and δ-tocopherol is softer. The hardness of tocopherols decreases
in aqueous medium. They evolved from a balanced form to an unstable form with the
exception of isoform δ. As expected, the presence of water increases the electrophilicity of
the four tocopherols (Table 4).

Table 4. The main calculated chemical descriptors of the four tocopherols obtained in B3Lyp/6-31G*
(expressed as eV).

I A χ µ η S ω

α-Tocopherol Gas state 0.1818 −0.0130 0.0844 −0.0844 0.0974 10.2675 0.0366
Aqueous solution 0.1900 −0.0028 0.0936 −0.0936 0.0964 10.3751 0.0454

β-Tocopherol Gas state 0.1837 −0.0132 0.0853 −0.0853 0.0984 10.1580 0.0369
Aqueous solution 0.1916 −0.0031 0.0943 −0.0943 0.0973 10.2727 0.0457

γ-Tocopherol Gas state 0.1843 −0.0107 0.0868 −0.0868 0.0975 10.2543 0.0386
Aqueous solution 0.1926 0.0001 0.0963 −0.0963 0.0963 10.3891 0.0482

δ-Tocopherol Gas state 0.1870 −0.0059 0.0906 −0.0906 0.0964 10.3724 0.0425
Aqueous solution 0.1946 −0.0001 0.0973 −0.0973 0.0973 10.2764 0.0486

4. Conclusions

The difference in electronegativity for isoforms β and γ is clearly visible. Our results
show that the electron transfer takes place in the direction α < β < γ < δ in both media (gas
and aqueous solution).

Our results can contribute to understanding the behavior of tocopherols in reaction media.
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