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Abstract: DFT calculations were applied to an iron/catechol derivative system to investigate their
effect on the structure of CPPs as a function of (a) metal valence—Fe+2 and Fe+3 in high- and low-spin
states; (b) type of chelating groups in the catechol derivatives and their geometries; and (c) the
aliphatic chain length between two chelating groups in a model polydentate ligand. The results
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to synthesize CPPs. In addition, the inclusion of an aliphatic chain with four carbons between the
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1. Introduction

Catechol derivatives are promising for use as functional materials [1] due to their
metal-chelating ability [2], making them excellent ligands for generating Coordination
Polymer Particles (CPPs). They self-assemble into CPPs from metal ions and polydentate
organic ligands (Figure 1) [3]. Up until now, polymeric structure characterization remains
challenging; however, being able to predict CPP properties such as morphology, size and
stability in diverse environments is essential for their applications.
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Figure 1. Formation of CPPs.

In this study, we present findings from conducting DFT calculations on iron/catechol
derivative systems, with the primary functional groups being considered for use in CPP
synthesis (Figure 1). We then conducted an analysis of the results to better understand their
impact on the CPP synthesis process.

2. Methods

All computations in this work were carried out with the ORCA 5.0 program pack-
age [4,5]. Geometry optimizations of the high-spin and low-spin states for each complex
were performed with the BP86 density functional [6] with D3BJ dispersion correction [7,8],
a methodology widely used for this type of complex [9]. Single-point energy calculations
were carried out with wB97X [10] with D3BJ dispersion correction. The def2 TZVPP (Fe),
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TZVP (O, N, S) and SVP (other) basis sets [11] were applied in the geometry optimizations
and single-point calculations.

3. Results and Discussion

The synthesis and properties of CPPs are highly dependent on the type of metal ion
used, the chelating groups present in the ligands and their structure. In this context, by
employing DFT calculations on an iron/catechol derivative system, we investigated the
effect on the structure of CPPs based on:

• The use of Fe+3 and Fe+2 in high- and low-spin states;
• The type of chelating groups in catechol derivatives as well as their geometries;
• The aliphatic chain length between the two chelating groups in a model polydentate

ligand.

3.1. Analysis of Metallic Species and Organic Chelating Groups

As previously mentioned, the formation of iron complexes with simplified repre-
sentative structures of the ligands and the Fe+2 and Fe+3 species in high- and low-spin
states were considered. It is known that other Fe+3 complexes with catechol derivatives
exhibit high-spin ferric species [12,13], and we found the same trend—all the high-spin
Fe+3 complexes were approximately 20 kcal/mol energetically more stable than that their
low-spin counterparts (Table 1). A comparable trend was observed for Fe+2 complexes.

Table 1. High/low spin energy differences (kcal/mol) for the iron complexes.

Complex Fe+3 Fe+2

trans-Fe(cat)2(pyr)2 −12 −21
cis-Fe(cat)2(pyr)2 −22 −18

Fe(cat)2 −21 −25
Fe(cat)3 −28 −45

trans-Fe(cat)2(thiol)2 −21 −34
cis-Fe(cat)2(thiol)2 −24 −57

In a subsequent step, the binding energies for the high-spin iron complexes were
evaluated and the results are compared in Table 2. According to the results, Fe+3 complexes
were more stable than Fe+2 complexes, with binding energies approximately twice as high.
As can be seen from Table 2, for the trans-Fe[(cat)2(pyr)2] complexes, the Fe+3 complex,
has a binding energy of 1609 kcal/mol, whereas the Fe+2 analog has a binding energy of
848 kcal/mol.

Table 2. Binding energy of high-spin iron complexes (kcal/mol).

Metallic ion

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2]

trans

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

cis

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

tetrahedrical

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

planar

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

 

cis

 

tetrahedrical 

 

 

planar 

 

 
 

trans

 

cis

 

Fe
+3

 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe
+2 

 −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 

those with catechol-pyridine as ligands were more stable, favoring the trans geometry 

(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 

followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 

as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 

with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-

nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 

To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 

alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-

mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 

precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 

(kcal/mol) 

2 no formation no formation - 

3 0 5 −5 

4 16 21 −5 

6 29 34 −6 

8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 

between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 

both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 

spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 

more stable than the trans complexes. It is also observed that as the methylene spacer de-

creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 

an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 

and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 

energy values are presented in Table 4. It was found that dimer formation was more fa-

vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-

omers appeared to be more energetically stable compared to the dimers; however, as the 

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

trans

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

cis

Chem. Proc. 2023, 14, 1 3 of 5 
 

 

Table 2. Binding energy of high-spin iron complexes (kcal/mol). 

Metallic ion 

[Fe(cat)2(pyr)2] [Fe(cat)2] [Fe(cat)3] [Fe(cat)2(thiol)2] 

trans

O
O

O
O

Fe

N

N

cis

 

tetrahedrical 
 

planar 
 

 

trans cis

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460 

Fe+2  −848 −838 −832 −831 −648 −546 −570 

Considering the binding energy of high-spin Fe+3 complexes, it was observed that 
those with catechol-pyridine as ligands were more stable, favoring the trans geometry 
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes 
followed them in stability, whereas catechol–thiol complexes proved to be the least stable, 
as can be seen in Table 2. The same trend was observed for Fe+2 complexes. 

Based on these results, we could assume that the use of Fe(III) salts in combination 
with catechol-pyridine or bis-catechol ligands appears to be the most appropriate combi-
nation for the synthesis of CPPs. 

3.2. Effect of the Methylene Spacers between the Chelating Groups 
To examine the influence of the aliphatic chain length between the two chelating 

groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the 
alkyl chain ranging from two to eight methylene groups (Table 3). The length and confor-
mation of this alkylic chain could significantly affect the formation of the CPPs, as it may 
precipitate as a stable monomer, thereby inhibiting polymer growth. 

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers. 

 
model ligand 

n = 

 
cis-monomer 

(kcal/mol) 

 
trans-monomer 

(kcal/mol) 

∆E = Ecis − Etrans 
(kcal/mol) 

2 no formation no formation - 
3 0 5 −5 
4 16 21 −5 
6 29 34 −6 
8 46 50 −4 

We calculated the formation of the possible cis and trans isomers of the monomers 
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain 
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl 
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol 
more stable than the trans complexes. It is also observed that as the methylene spacer de-
creases in length, the monomers increase their stability. For the cis isomer, Table 3 shows 
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three, 
and 50 kcal/mol for the trans isomer. 

The same analysis was carried out to examine dimer formation, and their relative 
energy values are presented in Table 4. It was found that dimer formation was more fa-
vorable with four methylene groups in the alkyl chain. On the other hand, isolated mon-
omers appeared to be more energetically stable compared to the dimers; however, as the 

Fe+3 −1609 −1602 −1582 −1569 −1558 −1455 −1460
Fe+2 −848 −838 −832 −831 −648 −546 −570

Considering the binding energy of high-spin Fe+3 complexes, it was observed that
those with catechol-pyridine as ligands were more stable, favoring the trans geometry
(1609 kcal/mol) over the cis (1602 kcal/mol) by 7 kcal/mol. Fe(cat)2 and Fe(cat)3 complexes
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Based on these results, we could assume that the use of Fe(III) salts in combination with
catechol-pyridine or bis-catechol ligands appears to be the most appropriate combination
for the synthesis of CPPs.

3.2. Effect of the Methylene Spacers between the Chelating Groups

To examine the influence of the aliphatic chain length between the two chelating
groups, a ligand model of 3-((5-mercaptoalkyl)thio)benzene-1,2-diol was used, with the alkyl
chain ranging from two to eight methylene groups (Table 3). The length and conformation
of this alkylic chain could significantly affect the formation of the CPPs, as it may precipitate
as a stable monomer, thereby inhibiting polymer growth.

Table 3. Structure of the ligand model and relative binding energies of the cis and trans monomers.
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We calculated the formation of the possible cis and trans isomers of the monomers
between high-spin Fe+3 and the model ligand. As can be observed from Table 3, to obtain
both, cis- and trans-monomers, at least three methylene groups were necessary as alkyl
spacers in the alkyl chain. Additionally, the cis complexes were approximately 5 kcal/mol
more stable than the trans complexes. It is also observed that as the methylene spacer
decreases in length, the monomers increase their stability. For the cis isomer, Table 3 shows
an energy stabilization of 46 kcal/mol when methylene groups reduce from eight to three,
and 50 kcal/mol for the trans isomer.

The same analysis was carried out to examine dimer formation, and their relative
energy values are presented in Table 4. It was found that dimer formation was more
favorable with four methylene groups in the alkyl chain. On the other hand, isolated
monomers appeared to be more energetically stable compared to the dimers; however, as
the length alkylic chain increased, the formation of the dimers became progressively more
favorable.

Table 4. Structure of the ligand model and relative binding energies of cis monomer and dimer.
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According to the obtained results, we can assume that the incorporation of an alkyl
spacer of at least four methylene groups between the chelating groups could be more
advantageous for polymer formation over monomer formation, thus favoring the synthesis
of the CPPs.
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The structures are currently being recalculated by incorporating solvent and other
metal ions, both of which are factors that can affect the energy and/or structure of the CPPs.

4. Conclusions

DFT calculations are a powerful tool for investigating the structure and properties of
CPPs. Based on these findings, catechol-pyridine and bis-catechol ligands, with Fe+3 as the
metallic ion, would form structures potentially suitable for synthesizing CPPs.

The analysis on the effect of the methylene spacers between the chelating groups
could indicate that a shorter spacer of at least three methylenes promotes monomer forma-
tion, while increasing the spacer to four or more methylenes improves the possibility of
polymerization.

Future research is focused on the impact of additional factors on the structure of CPPs,
such as the presence of solvent molecules and other metallic ions.
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