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Abstract: 1,4-Butane-sultone functionalized graphitic carbon nitride nanosheets (g-C3N4@Bu-SO3H)
was prepared and applied as an efficient heterogeneous catalyst for the synthesis of various quina-
zolines derivatives with high yield. In next step, the structure and morphology of catalyst was
characterized by different analyses such as, FT-IR, EDS, XRD and FE-SEM. On the other side, con-
sidering the noticeable features of g-C3N4@Bu- SO3H such as high stability, easy to synthesize,
non-toxicity, excellent reusability, and so on, the synthesis of 2,3-dihydroquinazolines derivatives
with numerous advantages such as short reaction time reaction condition, easy separation and etc
were realized.

Keywords: 1,4-Butane-sultone; graphitic carbon nitride; 2,3-dihydroquinazolines derivatives;
heterogeneous catalyst

1. Introduction

Quinazolines and their derivatives are as a significant class of nitrogen-containing
heterocyclic scaffolds that the structure of these compounds have been formed from six-
membered fused rings [1]. Accordingly, these quinazolines derivatives have numerous
biological activities, including anticancer, antimalaria, antimicrobial, antiviral, anti-HIV,
anti-inflammatory, antifungal, acaricidal, weedicide, antidepressant, anticonvulsant, mus-
cle relaxant, and so on [2,3]. On the other side, because of various biological values, they
are utilized for synthesis of considerable drugs such as prazosin (treatment of benign
prostatic obstruction) [4], geftinib (antitumor therapeutic agents) [5,6], erlotinib (EGFR
inhibitor) [7], lapatinib (tyrosine kinase inhibitor) [8], alfuzosin (anticancer) [9], febrifugine
(antimalaria) [10], and etc. (Scheme 1).

Recently, the preparation of 2,3-dihydroquinazolines derivatives has been heeded as
the basic structure of the most bioactive medicines [11]. Therefore, to apply an effective
and excellent catalyst is a noticeable approach to develop the synthesis of them with high
yield. Because of various advantages such as, photocatalytic activity, wastewater treatment,
organic transformation, disinfection, healthcare, environmental, electrochemical biosensor,
CO2 reduction, and H2 generation [12,13]. Graphitic carbon nitride (g-C3N4) is considered
as catalytic support for synthesis of different heterogeneous catalyst. In addition, Among
the various catalytic methods, the use of metal-free heterogeneous catalysts is one of the
best methods due to its green nature, easy synthesis and separation [14]. Although, there
are different types of metal and metal-free catalysts such as PBDS-SCMNPs ionic liquid [15],
Wang-OSO3H [16], Silica sulfuric acid [17], titanium silicon oxide [18], montmorillonite-
KSF [19], SrCl2.6H2O [20], and Y(NO3)3.6H2O [21] that have been used for the synthesis
of these heterocyclic derivatives but These catalysts have disadvantages and limitations
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such as difficult and long synthesis steps, expensive reagents, high reaction temperature,
and low stability that lead to importance of the synthesis and characterization of suitable
metal-free catalyst that can be beneficial for eliminating these disadvantages.

Chem. Proc. 2022, 12, 94  2 of 10 
 

 

used for the synthesis of these heterocyclic derivatives but These catalysts have disad-

vantages and limitations such as difficult and long synthesis steps, expensive reagents, 

high reaction temperature, and low stability that lead to importance of the synthesis and 

characterization of suitable metal-free catalyst that can be beneficial for eliminating these 

disadvantages. 

 

Scheme 1. Some of the pharmaceutical active compounds containing quinazoline structures. 

In this work, a high efficient metal-free heterogeneous catalyst (g-C3N4@Bu-SO3H) 

was prepared and applied for synthesis of 2,3-dihydroquinazoline and its derivatives with 

excellent advantages consisting of short reaction time, inexpensive and available raw ma-

terials, no oxidant, and high selectivity (Scheme 2 and Table 1). 

 

Scheme 2. Multi-component reaction for the synthesis of 2,3-dihydroquinazolines derivatives. 

Table 1. Synthesis of 2,3-dihydroquinazoline derivatives using g-C3N4@Bu-SO3H metal-free cata-

lyst. 

Entry R Product Time (min) Mp (°C) Yield 

1 H 4a 15 207–210 90 

2 4-Cl 4b 15 203–206 96 

3 2-Cl 4c 15 205–206 95 

4 4-NO2 4d 20 201–202 90 

5 3-OH 4e 30 212–216 89 

Reaction conditions: benzaldehyde (1 mmol), isotonic anhydride (1 mmol), and ammonium acetate 

(1 mmol), g-C3N4@Bu-SO3H (20 mg) and ethanol (7 mL) under reflux conditions. 

  

Scheme 1. Some of the pharmaceutical active compounds containing quinazoline structures.

In this work, a high efficient metal-free heterogeneous catalyst (g-C3N4@Bu-SO3H)
was prepared and applied for synthesis of 2,3-dihydroquinazoline and its derivatives
with excellent advantages consisting of short reaction time, inexpensive and available raw
materials, no oxidant, and high selectivity (Scheme 2 and Table 1).
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Scheme 2. Multi-component reaction for the synthesis of 2,3-dihydroquinazolines derivatives.

Table 1. Synthesis of 2,3-dihydroquinazoline derivatives using g-C3N4@Bu-SO3H metal-free catalyst.

Entry R Product Time (min) Mp (◦C) Yield

1 H 4a 15 207–210 90
2 4-Cl 4b 15 203–206 96
3 2-Cl 4c 15 205–206 95
4 4-NO2 4d 20 201–202 90
5 3-OH 4e 30 212–216 89

Reaction conditions: benzaldehyde (1 mmol), isotonic anhydride (1 mmol), and ammonium acetate (1 mmol),
g-C3N4@Bu-SO3H (20 mg) and ethanol (7 mL) under reflux conditions.

2. Experimental
2.1. Material

All chemicals were purchased from the Merck (NJ, USA) and Sigma-Aldrich (Burling-
ton, MA, USA) Co. Fourier Transform Infrared (FT-IR) spectra were recorded on Tensor 27.
Nuclear Magnetic Resonance (NMR) data were acquired on a Varian-Inova 500 MHz. X-Ray
Diffraction (XRD) patterns were obtained using Dron-8 diffractometer. Energy-dispersive
X-ray (EDX) spectrum was recorded on Numerix DXP-X10P. Field Emission Scanning
Electron Microscopy (FE-SEM) images were recorder with TESCAN-MIRA III.
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2.2. Preparation of Bulk g-C3N4 and Nanosheets

First, the melamine powder was heated at 550 ◦C in furnace in air atmosphere at
the heating rate 2.5 ◦C/min for 4 h. Then, the obtained yellow powder was well ground
with a mortar to obtain a blended solid powder. In next step, for the synthesis of g-C3N4
nanosheets, bulk g-C3N4 (1.0 g) was stirred with H2SO4 (20.0 mL) at 90 ◦C for 5 h. The
resulting mixture was stirred by (200 mL) ethanol in room temperature at 2 h and it
remained constant until all the material was settled. After 2 days, the resulting mixture
was dispersed by ultrasonic probe at 300 W for 1.5 h. Eventually, the formed suspension
was washed three times by ethanol and seven times by distilled water. After that, white
product was dried in oven at 60 ◦C.

2.3. Preparation of Graphitic Carbon Nitride Nanosheets Functionalized with 1,4-Butane-Sultone
(g-C3N4@Bu-SO3H)

First, the g-C3N4 nanosheets (1.0 g) were dispersed in toluene (25 mL), after that
1,4-butane-sultone (3.0 g) was added the reaction mixture and was refluxed under nitrogen
atmosphere for 6 h. Finally, the resulting product got cold in room temperature, then it
was centrifuged and washed with chloroform and ethyl ether solvents, and dried in oven
at 60 ◦C.

2.4. Selected Spectral Data

2-phenyl-2, 3-dihydro-4(1H)-quinazolinone (4a)
FT-IR (KBr, cm−1): 3300, 3176, 2981, 1651, 1610, 1507, 1440, 1385, 745 cm−1. 1H NMR

(500 MHz, DMSO): δ H (ppm) = 5.75 (s, 1H, CH), 6.67 (t, 1H, Ar-H), 6.74 (d, 1H, Ar-H),
7.1 (s, 1H, NH), 7.23 (t, 1H, Ar-H), 7.34 (t, 1H, Ar-H), 7.38 (t, 1H, Ar-H), 7.49 (d, 1H, Ar-H),
7.60 (d, 1H, Ar-H), 8.27 (s, 1H, CONH) (Figures 1 and 2).
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Figure 1. FT-IR spectrum of the 2-phenyl-2,3-dihydro-4(1H)-quinazolinone. Figure 1. FT-IR spectrum of the 2-phenyl-2,3-dihydro-4(1H)-quinazolinone.

2-(4-chloro-phenyl)-2, 3-dihydro-1H-quinazoline-4-one (4b)
FT-IR (KBr, cm−1): 3305, 3184, 3062, 1654, 1606, 1431, 1090, 749 cm−1. 1H NMR

(500 MHz, DMSO): δ H (ppm) = 5.77 (s, 1H, CH), 6.68 (t, 1H, Ar-H), 6.74 (d, 1H, Ar-H),
7.1 (s, 1H, NH), 7.24 (t, 1H, Ar-H), 7.45 (d, 1H, Ar-H), 7.50 (d, 1H, Ar-H), 7.61 (d, 1H, Ar-H),
8.27 (s, 1H, CONH) (Figures 3 and 4).
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3. Results and Discussion

The g-C3N4@Bu-SO3H heterogeneous catalyst was synthesized in just three steps
(Scheme 3). In the first step, bulk g-C3N4 was prepared by polymerization of melamine.
In the second step, the morphology of bulk g-C3N4 was changed to g-C3N4 nanoparticle.
Finally, g-C3N4 nanoparticle was functionalized with 1,4-butane-sultone. This catalyst
was proved by different analyses such as Fourier Transform Infrared (FT-IR) Spectroscopy,
Energy Dispersive Spectrometer (EDS), Field Emission Scanning Electron Microscopy
(FE-SEM), and X-ray diffraction analysis (XRD) [22].

The FT-IR spectra of g-C3N4 nanosheets (a) and g-C3N4@Bu-SO3H (b) have been
showed in Figure 5. A relatively strong peak in the range of 3000 to 3300 cm−1 is related to
stretching vibration of N–H bonds, the 1602 cm−1 peak is related to C=N stretching vibra-
tion modes. The absorption peak of C–N bonds observed in rang of 1303 and 1082 cm−1

that can be attributed to C–N bonds between triazine and N–H groups. On the other hand,
the characteristic peaks at 1448 and 1379 cm−1 are related to C–N ring bonds and finally,
the peak at 784 cm−1 may be related to tri-s-triazine units (Figure 5a).

In the spectrum of g-C3N4@Bu-SO3H, which is shown in Figure 5b, the two peaks
2781 and 2758 cm−1 are related to C–H groups in 1,4-butane-sultone. The symmetric and
asymmetric stretching vibration modes of SO2 have appeared in the regions 1220 and
1348 cm−1, the characteristic peaks at 1176 and 1207 cm−1 are related to S–OH bonds.

In the Figure 6a, the presence of carbon and nitrogen atoms in structure of g-C3N4
nanosheets was confirmed by the EDS analysis. As shown in the Figure 6b, the presence of
oxygen and sulfur elements proves synthesis of desired catalyst (g-C3N4-Bu-SO3H).

The morphology of g-C3N4 nanosheets and g-C3N4@Bu-SO3H were shown by the
FE-SEM images. In the Figure 7a, the g-C3N4 nanosheets have a relatively flat surface, while
in the Figure 7b, image of g-C3N4@Bu-SO3H is partly different and irregular. Therefore,
this variance can verified the deposition of sultone on the g-C3N4 nanosheets.

The XRD pattern of g-C3N4 nanosheets and g-C3N4@Bu-SO3H can be seen in Figure 8.
Diffraction peaks at 2θ: 27.35◦ (002) and 13.04◦ (100) are related g-C3N4 nanosheets
(Figure 8a). Also diffraction peaks at 2θ: 27.4◦ (002), 2θ = 17.9◦, and 14.8◦ (100) are
related to the g-C3N4@Bu-SO3H that approve synthesis of this catalyst (Figure 8b).
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4. Reusability

Reusability of g-C3N4@Bu-SO3H catalyst was examined for synthesis of
2,3-dihydroquinazolines derivatives in four runs, the considering Figure 9, reaction yield
was decreased considerably after third run.
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5. Conclusions

In summary, an efficient heterogeneous catalyst (g-C3N4@Bu-SO3H) was synthesized
and utilized for production of 2,3-dihydroquinazolines derivatives with highly advantages
such as short reaction time, mild condition, and easy separation. On the other side, this
catalyst can be used and recycled for five times with high yield.
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