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Abstract: A metal-organic framework Zn2(BDC)2(DABCO) was employed as a reusable hetero-
geneous acidic catalyst in the acylation reaction of various benzaldehydes with acetic anhydride
under microwave irradiation. The outstanding features of this efficient solvent-free method are short
reaction time, ease of product separation, greatest yields, and the ability to reuse the catalyst several
times.
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1. Introduction

In order to carry out the selective reactions in the desired position during multi-step
procedures, it is necessary to protect parts of the molecules with various functional groups
so that they do not participate in the main reaction and also prevent the production of side
products [1]. Compounds containing aldehydic carbonyl groups are commonly protected
by transforming them into acetals, dithioacetal, oxathioacetals, and diacetate (acylal) [2].
The characteristic of stability in neutral environments, the comfort of preparation, and
multiple applications, including as initiating materials for the Diels–Alder reaction, inter-
mediates in industrial processes, and geminal diacetates (acylals), have been highlighted
among the various protection approaches of aldehydes [2,3]. Ethanethiol, acetic anhy-
dride, and alcohol are some of the reagents used to protect aldehydes [4]. The use of
protic or Lewis acid catalysts such as AC-N-SO4H [5], magnetic Fe3O4@C-600-SO3H micro-
spheres [6], SiO2-NaHSO4 [7], STO/Al-P [8], poly(p-hydroxybenzaldehyde-co-p-phenol
sulfonate) [9], tungstosulfonic acid (TSA) [3], hexabromoacetone (HBA) [1], (MNPs-PSA) [2],
and 5,10,15,20-tetrakis(pentafluorphenylporphyrin) iron (III) chloride (Fe5F) [10] play an
essential role in the better progress of the chemo-selective reactions. Heterogeneous acid
catalysts have advantages over their homogeneous types, such as simple separation via
straightforward filtration, possible reuse, and convenient provision, which make them an
ideal choice for catalyzing synthesis reactions [4]. Metal–organic frameworks (MOFs) are a
new type of hybrid material composed of metal nodes and organic ligands [11,12]. Since
ligands and constituent metals are available in a wide variety, these versatile and adjustable
crystalline structures can be used for a variety of applications [13], including gas absorption
and storage [14,15], hydrocarbon separation [16], luminescence [17,18], sensors [19,20],
drug delivery [21,22], energy storage [23], enzyme encapsulation [24,25], and catalysts [26].
In recent years, many studies have discussed the application of MOFs as heterogeneous
catalysts in multi-step synthesis reactions, especially in the liquid phase. It has been found
that the stability of the structure of MOFs in different chemical conditions, the presence
of positive metal ions, high porosity, and high surface-to-volume ratio, and the various
preparation methods significantly contribute to the appropriate catalytic performance of
the MOFs [27]. Continuing our efforts to investigate the catalytic performance of MOFs, we
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report a simple and efficient approach for protecting the carbonyl group in a range of ben-
zaldehyde compounds using M2(BDC)2(DABCO) as a Lewis acid catalyst under microwave
irradiation conditions (Scheme 1). To investigate the catalytic performance of transition
metals, such as Ni, Cu, Co, and Zn in M2(BDC)2(DABCO) structures such as Lewis acid
catalysts, we investigated benzaldehyde acylation in the presence of Ni2(BDC)2(DABCO),
Cu2(BDC)2(DABCO), Co2(BDC)2(DABCO), and Zn2(BDC)2(DABCO).
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2. Materials and Methods

For the protection of benzaldehydes with acetic anhydride under microwave irra-
diation, the general procedure was as follows: 3 mmol acetic anhydrides, 1 mmol ben-
zaldehyde, and 0.03 g M2(BDC)2(DABCO) (M = Ni, Cu, Co, and Zn) catalyst were added
into a flask and then exposed to microwave irradiation. The progress of the reaction was
observed by GC. After the ending of the reaction, dichloromethane (3 × 5 mL) was added
to the reaction mixture and the catalyst was separated via filtration. The organic phase
was washed with saturated KHCO3 solution (15 mL), dried over anhydrous MgSO4, and
concentrated under reduced pressure in a rotary evaporator to afford the crude product.
The yields were isolated and calculated as mmol of purified product with respect to mmol
of initial benzaldehydes.

3. Results and Discussion

To determine which catalyst is the best for the acylation of benzaldehyde, 1 mmol
benzaldehyde was examined with 3 mmol acetic anhydrides in the presence of 10 mg MOFs
such as Ni2(BDC)2(DABCO), Cu2(BDC)2(DABCO), Co2(BDC)2(DABCO), and Zn2(BDC)2
(DABCO), under both room temperature and microwave conditions (Table 1).

Table 1. Investigating the performance of the MOFs for the acylation reaction a.

Entry Catalyst Room Temperature/
Microwave Time (h/min) Yield (%) b

1 Ni2(BDC)2(DABCO)
R.T 24 h 100
MW 19 min 93

2 Cu2(BDC)2(DABCO)
R.T 33 h 94
MW 20 min 90

3 Co2(BDC)2(DABCO)
R.T 30 h 97
MW 25 min 92

4 Zn2(BDC)2(DABCO)
R.T 10 h 100
MW 13 min 100

a At room temperature and solvent-free condition. b Yields were determined by GC.

With respect to the time and reaction yield, Zn2(BDC)2(DABCO) was the best among
the others under microwave irradiation conditions. In addition, the reaction in solvent-free
conditions and ambient temperature in the presence of different amounts of Zn2(BDC)2
(DABCO) catalyst, including 10, 20, 30, and 40 mg, and various quantities of acetic an-
hydride, including 1, 2, 3, and 4 mmol, was investigated. The results indicated that the
optimum amounts of catalyst and acetic anhydride are 30 mg and 3 mmol, respectively.
To assess the solvent effect, acylation of benzaldehyde (1 mmol) with acetic anhydride
(3 mmol) in the presence of 30 mg of Zn2(BDC)2(DABCO) catalyst was analyzed as a model
reaction under different environmental conditions (Table 2).
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In terms of time and reaction yield, the best conditions were found in entry 7. The
reaction was completed in just 7 min under microwave irradiation and in the solvent-
free condition with 30 mg of Zn2(BDC)2(DABCO) used as the catalyst. Inspired by our
introductory results, we subjected numerous amounts of benzaldehydes to acylation under
the optimized conditions with the Zn2(BDC)2(DABCO) catalyst as summarized in Table 3.
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4. Conclusions

In summary, it was found that the catalytic activity of the organic metal framework
Zn2(BDC)2(DABCO) under solvent-free conditions and microwave irradiation is significant
in the protection reactions of benzaldehydes. The unique advantages of this protocol
include short reaction time, ability to recover and reuse the catalyst, solvent-free conditions,
high efficiency, and simple method.
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