

MDPI

Proceeding Paper

Cp₂TiCl₂—Catalyzed Synthesis of Tertiary Alcohols by the Reaction of AlCl₃ with Ketones and Aryl Olefins [†]

Liaisan K. Dilmukhametova *, Mariya G. Shaibakova and Ilfir R. Ramazanov

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa. Russia

- * Correspondence: leisandil@inbox.ru
- † Presented at the 26th International Electronic Conference on Synthetic Organic Chemistry, 15–30 November 2022; Available online: https://sciforum.net/event/ecsoc-26.

Abstract: We have previously obtained significant results in the cycloalumination of olefins with EtAlCl₂ in the presence of magnesium and a Cp₂ZrCl₂ or Cp₂TiCl₂ catalyst. Here we report the development of an efficient one-pot catalytic method for the synthesis of tertiary alcohols from AlCl₃, aryl olefins, and ketones under the action of Cp₂TiCl₂. The developed method for producing tertiary alcohols has a general character and allows the conversion of styrene and substituted styrenes (*ortho-, para-*methylstyrenes) into aryl-substituted tertiary alcohols with yields of up to 76% in the reaction with acetone or methyl ethyl ketone. We assume that the reaction proceeds through the formation of a titanacyclopropane intermediate.

Keywords: titanocene; catalysis; arylolefines; ketones; tertiary alcohols

Citation: Dilmukhametova, L.K.; Shaibakova, M.G.; Ramazanov, I.R. Cp₂TiCl₂—Catalyzed Synthesis of Tertiary Alcohols by the Reaction of AlCl₃ with Ketones and Aryl Olefins. *Chem. Proc.* **2022**, *12*, 65. https:// doi.org/10.3390/ecsoc-26-13706

Academic Editor: Julio A. Seijas

Published: 18 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tertiary alcohols are widely used in medicine and industry [1,2]. One of the best methods for the preparation of tertiary alcohols is the reaction of ketones with organomagnesium compounds [1,3,4]. We have previously obtained significant results in the cycloalumination of olefins with $EtAlCl_2$ in the presence of magnesium and a Cp_2ZrCl_2 or Cp_2TiCl_2 catalyst [5–7]. Here we report the development of an efficient one-pot catalytic method for the synthesis of tertiary alcohols from $AlCl_3$, aryl olefins, and ketones under the action of Cp_2TiCl_2 .

2. Results and Discussion

We found that the reaction of styrene with $AlCl_3$ and methyl ethyl ketone in the presence of metallic Mg as an acceptor of halide anions and Cp_2TiCl_2 as a catalyst (10 mol%) in THF (tetrahydrofuran) solvent at 20 °C for 8 h leads to the formation of 3-methyl-1-phenylpentan-3-ol 1a in a 76% yield (Scheme 1).

$$Ph$$
 + MeCOEt + AlCl₃ Mg , Cp_2TiCl_2 Ph Me Me 76%

Scheme 1. The reaction of styrene with AlCl₃ and methyl ethyl ketone in the presence of metallic Mg.

In non-ether solvents (hexane, DMSO (dimethyl sulfoxide), DMF (N,N-dimethylformamid), and methylene chloride), the yield of reaction product 1a is less than 11%. Carrying out the reaction at ~0 °C reduces its rate and the conversion of the initial styrene, which does not exceed 20% for 15 h. With an increase in temperature to ~65 °C, the reaction is completed in almost 2 h, but it is less selective. The best results were obtained when the reaction was

Chem. Proc. 2022, 12, 65 2 of 4

carried out in tetrahydrofuran in the presence of Ti-containing catalysts. The reaction does not proceed in the absence of a catalyst.

The developed method for producing tertiary alcohols has a general character and allows the conversion of styrene and substituted styrenes (*ortho-, para-*methylstyrenes) into aryl-substituted tertiary alcohols with 66–73% yields in the reaction with acetone or methyl ethyl ketone (Scheme 2).

$$Ar$$
 + $RCOR'$ + $AlCl_3$ Mg,Cp_2TiCl_2 Ar R' **1b-d**

b:
$$Ar = Ph$$
, R , $R' = Me$ d: $Ar = p$ -methylphenyl, $R = Me$, $R' = Et$ c: $Ar = o$ -methylphenyl, $R = Me$, $R' = Et$

Scheme 2. Cp₂TiCl₂—Catalyzed synthesis of tertiary alcohols by the reaction of AlCl₃ with ketones and aryl olefins.

The structures of compounds 1a–d were identified using one-dimensional (¹H, ¹³C, DEPT135) and two-dimensional (HSQC (heteronuclear single quantum correlation), HMBC (heteronuclear multiple bond correlation) and HHCOSY (HH correlation spectroscopy) NMR (nuclear magnetic resonance spectroscopy, HRMS (high resolution mass-spectrometry).

3. Conclusions

Thus, we have developed a new one-pot method for the production of substituted tertiary alcohols from aryl olefins and ketones in the presence of $AlCl_3$ and catalytic amounts of Cp_2TiCl_2 .

4. Experimental Part

General. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance II 400 Ascend (400 MHz for ¹H and 100 MHz for ¹³C) and Bruker Avance II HD 500 Ascend (500.17 MHz for 1 H and 125.78 MHz for 13 C) instruments ("Bruker", Germany) in CDCl $_{3}$. Mass spectra were obtained on a Finnigan 4021 instrument ("Thermo Electron Corporation", Waltham, MA, USA) Chromatographic analysis was performed on a Shimadzu GC-9A instrument ("Shimadzu", Kyoto, Japan) using a 2000×2 mm column, the SE-30 (5%) stationary phase on a Chromaton N-AW-HMDS (0.125–0.160 mm), helium carrier gas (30 mL/min), temperature programming from 50 to 300 °C at an 8 °C/min rate. IR spectra were recorded on a Bruker VE Vertex 70v spectrometer ("Bruker", Bremen, Germany) as liquid films and are reported in wavenumbers (cm^{-1}) . Elemental analysis was performed using a Carlo-Erba CHN 1106 elemental analyzer ("Carlo Erba Instruments", Cornaredo, Italy). For column chromatography, Acros silica gel (0.060-0.200 mm) ("Acros Organics", Geel, Belgium) was used. Reactions with organometallic compounds were performed in a dry argon flow. Commercially available styrenes, ketones, Cp₂TiCl₂, Mg, and AlCl₃ ("Sigma-Aldrich", St. Louis, MO, USA) were used. The solvents were dried and distilled immediately prior to use.

Experimental Procedures. A 50 mL glass reactor equipped with a magnetic stirrer under a dry argon atmosphere at 0 °C was charged under stirring with 5 mL of THF, 2 mmol aryl olefin, 4 mmol AlCl₃, 2 mmol ketone, 4 mmol Mg (powder), and 0.2 mmol Cp₂TiCl₂. The temperature was brought to room temperature (20–21 °C) and the reaction mixture was stirred for 8 h. The reaction mixture was treated with a 7–10% HCl aqueous solution, the reaction products were extracted with diethyl ether, dried over calcined MgSO₄, and the solvent was evaporated on a rotary evaporator. The products were isolated by column chromatography (silica gel L, 180/250 μ , eluent—hexane:ethyl acetate (1:1)).

Compound 1a was isolated by column chromatography and provided 3-methyl-1-phenylpentan-3-ol as a yellow oil (73%). Rf 0.61. IR (film): 3375; 3027; 2930; 2873; 1454;

Chem. Proc. 2022, 12, 65 3 of 4

1379; 1137; 1026; 752 cm $^{-1}$. 1 H NMR (500.1 MHz, CDCl₃), δ : 0.97 (t 3H, J 7.0 Hz), 1.26 (s 3H), 1.55–1.62 (m 2H), 1.77–1.81 (m 2H), 2.68–2.72 (m 2H), 7.27–7.30 (m 5H). 13 C NMR (500.1 MHz, CDCl₃), δ : 8.30, 26.34, 30.35, 34.42, 43.28, 72.85, 125.75, 128.36, 128.43, 142.73. HRMS, m/z: 201.0618 [M + Na] $^{+}$. Found (%): C, 80.82; H, 10.06. Calc. for C₁₂H₁₈O (%): C, 80.85; H, 10.18.

Compound 1b was isolated by column chromatography and provided 2-methyl-4-phenylbutan-2-ol as a yellow oil (69 %). Rf 0.61. IR (film): 3376; 3011; 2916; 2902; 1466; 1359; 1131; 828; 744 cm⁻¹. 1 H NMR (500.1 MHz, CDCl₃), δ : 1.32 (s 6H), 1.80–1.84 (m 2H), 2.71–2.75 (m 2H), 7.19–7.33 (m 5H). 13 C NMR (500.1 MHz, CDCl₃), δ : 29.35, 30.76, 45.75, 70.92, 125.76, 128.32, 128.42, 142.53. HRMS, m/z: 187.0274 [M + Na]⁺. Found (%): C, 80.40; H, 9.70. Calc. for C₁₁H₁₆O (%): C, 80.44; H, 9.82.

Compound 1c was isolated by column chromatography and provided 3-methyl-1-(2-methylphenyl)pentan-3-ol as a yellow oil (66%). R_f 0.61. IR (film) 3301; 3037; 2902; 1647; 1359; 1016; 746 cm⁻¹. 1 H NMR (400 MHz, CDCl₃) δ : 0.98 (t 3H, J 7.0 Hz), 1.28 (s 3H), 1.61–1.64 (m 2H), 1.70–1.74 (m 2H), 2.35 (s 3H), 2.67–2.71 (m 2H), 7.14–7.17, 7.28 (m 4H). 13 C NMR (400 MHz, CDCl₃) δ : 8.28, 19.23, 26.28, 27.67, 34.37, 41.98, 72.90, 125.92, 126.09, 128.75, 130.23, 135.81, 140.79. HRMS, m/z: 215.0726 [M + Na]⁺. Found (%): C, 81.17; H, 10.35. Calc. for C₁₃H₂₀O (%): C, 81.20; H, 10.48.

Compound 1d was isolated by column chromatography and provided 3-methyl-1-(4-methylphenyl)pentan-3-ol as a yellow oil (70%). Rf 0.61. IR (film) 3309; 3063; 2935; 1674; 1386; 1081; 751 cm $^{-1}$. 1 H NMR (400 MHz, CDCl $_{3}$) δ : 0.97 (t 3H, J 7.0 Hz), 1.21 (s 3H), 1.58–1.61 (m 2H), 1.67–1.71 (m 2H), 2.21 (s 3H), 2.62–2.67 (m 2H), 7.12–7.16 (m 4H). 13 C NMR (400 MHz, CDCl $_{3}$) δ : 8.26, 21.00, 26.26, 30.01, 34.37, 41.68, 72.90, 126.99, 128.05, 136.11, 139.60. HRMS, m/z: 215.0735 [M + Na] $^{+}$. Found (%): C, 81.18; H, 10.35. Calc. for C $_{13}$ H $_{20}$ O (%): C, 81.20; H, 10.48.

Author Contributions: Conceptualization, L.K.D. and M.G.S.; methodology, M.G.S.; software, L.K.D.; validation, L.K.D.; formal analysis, L.K.D.; investigation, L.K.D.; resources, I.R.R.; data curation, L.K.D.; writing—original draft preparation, L.K.D.; writing—review and editing, I.R.R.; visualization, L.K.D.; supervision, M.G.S.; project administration, I.R.R.; funding acquisition, I.R.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 19-73-20128. The analytical part of the study was carried out within the framework of the state assignment of the Ministry of Education and Science (No. FMRS-2022-0076).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The results were obtained on unique equipment at the "Agidel" Collective Usage Center (Ufa Federal Research Center, Russian Academy of Sciences).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Richey, H.G. Grignard Reagents: New Developments; Wiley: New York, NY, USA, 1999.
- 2. de Vries, J.G. *Quaternary Stereocenters, Challenges and Solutions for Organic Synthesis*; Christoffers, J., Baro, A., Eds.; Wiley-VCH: Weinheim, Germany, 2005; Chapter 2; pp. 25–50.
- 3. Grignard, V.; Hebd, C.R. Sur quelques nouvelles combinaisons organomé talliques du magné sium et leur application à des synthè ses d'alcools et d'hydrocarbures. *Seances Acad. Sci.* **1900**, 130, 1322.
- 4. Seyferth, D. The Grignard Reagents. Organometallics 2009, 28, 1598–1605. [CrossRef]
- 5. Khafizova, L.; Gubaidullin, R.R.; Shaibakova, M.; Dzhemilev, U.M. Synthesis of substituted cyclopropanes from vinylarenes and esters in the presence of Cl_nAlEt_{3-n} and Cp₂ZrCl₂ as catalyst. *Rus. J. Org. Chem.* **2013**, *49*, 815–821. [CrossRef]

Chem. Proc. 2022, 12, 65 4 of 4

6. Khafizova, L.; Shaibakova, M.; Dzhemilev, U. A new one-pot synthesis of tetrasustituted pyrazines by the Ti-catalyzed reaction of aromatic and benzyl-substituted nitriles with EtAlCl₂. *Chem. Sel.* **2018**, *3*, 11451–11453. [CrossRef]

7. Shaibakova, M.; Khafizova, L.; Chobanov, N.; Gubaidullin, R.; Popod'ko, N.; Dzhemilev, U. The efficient one-pot synthesis of tetraalkyl substituted furans from symmetrical acetylenes, EtAlCl₂ and carboxylic esters catalyzed by Cp₂TiCl₂. *Tetrahedron Lett.* **2014**, *55*, 1326–1328. [CrossRef]