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Abstract: The report presents data from our studies on obtaining lembehyne B derivatives with cyto-
toxic and neuritogenic activity. The methods and approaches to the synthesis of the above-mentioned
lembehynes presented in the report are based on the use of the catalytic cross-cyclomagnesiation of
1,2-dienes (the Dzhemilev reaction) at the key stage of the synthesis.
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1. Introduction

Natural polyacetylenes are compounds containing two or more carbon–carbon triple
bonds in their structure. Naturally occurring polyacetylenes have a wide range of structural
diversity and are widely distributed in plants, fungi, marine invertebrates, etc. Acetylene
metabolites exhibit a wide range of biological activities, including antifungal, antimicro-
bial and antitumor activities, inhibition of HIV reverse transcriptase, which makes them
interesting for medicine, pharmacology, medicinal chemistry, and the pharmaceutical
industry [1–3].

Some secondary metabolites identified in various sponge species have antitumor activ-
ity. Sea sponges are leaders in their content of biologically active substances in comparison
with other marine invertebrates. Some compounds isolated from sponges have complex
structures and exhibit biological activity at very low doses [4,5].

The polyacetylenic compounds halicynones A (1) and B (2) were isolated from the
marine sponge Haliclona sp., possessing antifungal activities against Candida glabrata and a
high cytotoxicity against human colon tumor cells (HCT). Additionally, pellynols A (3) and
B (4) showed strong cytotoxicity against some melanoma and ovarian cancer cells [6–8].
Acetylene alcohols, strongylodiols A (5), and C (6) were obtained from the Okinawan
marine sponge belonging to the genus Strongylophora (Figure 1). Each of these compounds
was a mixture of enantiomers in different ratios and exhibited cytotoxic activity against
human T-lymphocytic leukemia (MOLT-4) cells [9].

Lembehynes A–C (7–9), long chain acetylenic alcohols, were isolated from the Indone-
sian marine sponge Haliclona sp. Lembehyne A (7) induces bipolar neuritogenesis of Neuro
2A cells, and also enhances the activity of Neuro2A acetylcholinesterase. Lembehynes B
(8) and C (9) also exhibit neuritogenic activity against the Neuro 2A neuroblastoma cell
line [10–12] (Figure 2).
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toma cell line [10–12] (Figure 2). 
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2. Results and Discussion 
We have synthesized new 1,3-diyne derivatives of lembehyne B using the catalytic 

cross-cyclomagnesiation of O-containing and aliphatic allenes at the key stage [13–32]. At 
the first stage, (13Z,17Z)-tetraconta-13,17-dienal (4) was obtained by the reaction of cross-
cyclomagnesiation of 1,2-nonadecadiene (10) and 2-tetradec-12,13-dien-1-yl-1,3-dioxolane 
(11) with EtMgBr in the presence of metallic Mg and catalytic amounts of Cp2TiCl2 (10 
mol.%) (10:11:EtMgBr:Mg:[Ti] = 12:10:30:20:0.1, Et2O, 20–22 °C, 7 h), giving a 79% yield 
(Scheme 1). At the second stage, successive reactions of aldehyde (13) with preliminarily 
obtained 1-lithium-4-trimethylsilyl-1,3-butadiine and removal of the trimethylsilyl group 
with trimethylbutylammonium fluoride (TBAF) in THF gave the target 1,3-diyne ana-
logue of rac-lembehyne B (15) with a ~66% yield (Scheme 1). 
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2. Results and Discussion

We have synthesized new 1,3-diyne derivatives of lembehyne B using the catalytic
cross-cyclomagnesiation of O-containing and aliphatic allenes at the key stage [13–32]. At
the first stage, (13Z,17Z)-tetraconta-13,17-dienal (4) was obtained by the reaction of cross-
cyclomagnesiation of 1,2-nonadecadiene (10) and 2-tetradec-12,13-dien-1-yl-1,3-dioxolane
(11) with EtMgBr in the presence of metallic Mg and catalytic amounts of Cp2TiCl2
(10 mol.%) (10:11:EtMgBr:Mg:[Ti] = 12:10:30:20:0.1, Et2O, 20–22 ◦C, 7 h), giving a 79%
yield (Scheme 1). At the second stage, successive reactions of aldehyde (13) with prelimi-
narily obtained 1-lithium-4-trimethylsilyl-1,3-butadiine and removal of the trimethylsilyl
group with trimethylbutylammonium fluoride (TBAF) in THF gave the target 1,3-diyne
analogue of rac-lembehyne B (15) with a ~66% yield (Scheme 1).
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In order to elucidate the influence of the stereoconfiguration of the hydroxyl group
in the acetylenic derivatives of lembehyne B, we developed an original method for the
synthesis of the latter, with the R-configuration of the hydroxyl group, by adding the
corresponding 1-bromoalkynes directly to the molecule of lembehyne B synthesized from
aldehyde (13) (Scheme 2).
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CuCl, NH2OH, n-BuNH2, H2O, rt, 99%; n = 1–3.

Thus, according to the developed scheme, we carried out the synthesis of racemic (17)
and natural lembehyne B (8) by successive reactions of the addition of lithium trimethylsi-
lylacetylenide to aldehyde (13), deprotection of the resulting alkyne (16), oxidation of
alcohol (17), and stereoselective reduction of ketone (18) at the final stage of synthesis.
Reactions of natural lembehyne B (8) with 1-bromo-2-trimethylsilylacetylene or 1-bromo-
2-(ω-hydroxyalkyl)acetylenes under the action of CuCl led to the synthesis of the target
1,3-diyne analogs of lembehyne B (19) and (20a–d) in high yields (50–67%). For the synthe-
sized 1,3-diyne derivatives of lembehynes B, apoptosis-inducing activity against five tumor
cell lines Jurkat, K562, U937, HeLa, and HEK293 and neuritogenic activity against PC12,
PC9, and Neuro2A cell cultures were studied in detail.

Experimental Section
1H and 13C NMR spectra and the general procedure for all the synthesized compounds

are presented in previously published articles [22–28].

3. Conclusions

Thus, we have synthesized, for the first time, 1,3-diyne analogues of lembehyne B
containing a Z,Z-diene group using the cross-cyclomagnesiation reaction of aliphatic and
O-containing 1,2-dienes catalyzed by Cp2TiCl2 at the key stage of the synthesis, and also
studied their antitumor activity using modern methods of flow cytometry and multi-
plex analysis.
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