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Abstract: Cyclodextrins (CDs) are macrocyclic oligosaccharides, containing between six and eight
alpha(1→ 4)-linked glucopyranoses. CDs have a hydrophobic cone-shaped internal cavity and a
hydrophilic exterior surface. They form non-covalent inclusion complexes (ICs) with various drugs
by trapping the full or partial inclusions in their cavity. Supramolecular ICs have gained attention
in engineering entrapped drug performance field due to their potential to protect and modify the
physicochemical properties of entrapped lipophilic and volatile drugs. However, the poor structural
and mechanical properties of pure CD-ICs could restrict their application and the need for a suitable
carrier system. Electrospun nanofibers have been the center of attention for biomedical applications
due to their tunable physicochemical properties. Recent studies have highlighted that the entrapment
of drug/CD-based ICs into nanofibers is an active research area since it facilitates high encapsulation,
it modulates the release profile of the guest, integrates multi-type drugs, and leads to a synergistic
effect. This mini-review first summarizes the potential benefits and shortcomings of drug/CD-ICs and
nanofibers, and then, we discuss the advancements in the fabrication and characteristics of CD-ICs
embedded nanofibers, along with some practical suggestions for potential biomedical applications.

Keywords: cyclodextrin; inclusion complexes; supramolecular chemistry; electrospun nanofibers;
nanocomposite; drug delivery

1. Introduction

A supramolecular system comprises two or more molecular entities that are held
together using non-covalent binding interactions. Cyclodextrins (CDs) act as a common
host for supramolecular chemistry, and they are rapidly gaining attention in biomedical
and pharmaceutical applications fields. CDs are non-reducing macrocyclic ring-shaped
oligomers composed of 6, 7, and 8 alpha(1 → 4)-linked glucopyranose units that are
commonly called αCDs, βCDs, and γCDs, respectively. It has attracted attention in the
engineering pharmacological fields because of its cone-shaped structure, which possesses a
hydrophobic internal cavity (given by the C–H bonds) and a hydrophilic exterior (due to the
distribution of free O–H) [1,2]. The internal diameter varies among the CD types, and they
are correlated with the number of glucopyranose units, i.e., the internal cavity diameter
increases in the following order: γCDs (0.75–0.83 nm) > βCDs (0.61–0.65 nm) > αCDs
(0.45–0.53 nm), while the depth of the cavity is the same (~0.78 nm) (Figure 1A,B). CDs with
less than six glucose units do not exist (for stoichiometric reasons), while CDs with more
than eight glucose units provide weak complexing properties [3]. Some chemically modified
forms of CDs, i.e., hydroxypropyl-βCDs (HPβCDs), hydroxypropyl-γCDs, methylated-
βCDs, and sulfobutylether-βCDs, etc., have been introduced to achieve higher solubility,
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increased drug stability, and the potential to undergo polymerization reactions and to
extend the range of their practical applications [4,5].
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Figure 1. (A) Schematic chemical structure of αCDs, βCDs, and γCDs. (B) The main physicochemical
properties of αCDs, βCDs, and γCDs. (C) Schematics representation of ICs formation between CDs
and guest molecules. (D) Schematic electrospinning setup. (E) Schematic representation of polymer-
free CDs nanofiber. (F) Schematic representation of drug-entrapped polymer-free CDs nanofiber.
(G) Schematic representation of drug-entrapped polymer-based nanofiber.

The unique structural properties of CDs offer distinguished physicochemical and en-
capsulation functionalities due to their potential to form inclusion complexes (ICs) against
a variety of solid, liquid, and gaseous compounds with matched polarity, hydrophobicity,
and molecular dimension [6,7]. The process of the “guest” inclusion into the CD occurs at
the molecular level, and it is attractive for engineering novel functional materials. Some
driving forces that support complexation include geometric compatibility, hydrophobic
effect, electrostatic interaction, dipole–dipole forces, and charge–transfer interactions [8]. It
furnishes a suitable microenvironment for the guest molecules through non-covalent host–
guest ICs and positively modifies their physicochemical properties (Figure 1C). CDs-based
ICs are widely used in biomedical, pharmaceutical, food industries, analytical chemistry,
water purification, and oilfield applications [9,10].

CDs can accommodate and modify the physicochemical properties of many entrapped
bioactive drugs, such as antimicrobial agents, peptides, and nucleic acid, etc., mainly in a
suspension formulation [11]. However, a few studies have explored these improvements
through nanostructured solid formulation for specific biomedical applications. This mini-
review first summarized the potential benefits and shortcomings of drug/CD-ICs and
nanofibers, and then, we discuss the advancements in the fabrication and characteristics of
CD-ICs embedded supramolecular nanofibers, along with some practical suggestions for
potential biomedical applications.
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2. Benefits and Shortcomings of CD-ICs in Biomedical Applications

Most drugs and bioactive substances either have poor heat stability, low water solubil-
ity, or volatile properties, making it difficult to use these molecules in their natural states [7].
The supramolecular ICs protect and shield the guest drugs against devastating environ-
mental effects (heat, moisture, chemical reactions, and oxidation) [12]. ICs can improve
the solubility, bioavailability, photostability, therapeutic index, physicochemical stability,
and shelf life of the entrapped drugs. They can reduce their volatility, modulate the release
profile of the guest molecules, and limit the unpleasant taste and smell of some functional
compounds [13]. They could decrease the local irritation and increase the permeability
of poorly soluble drugs across biological membranes [14]. ICs have been administered
through different routes (dermal, ophthalmic, nasal, oral, rectal, and intravenous ones) [5],
and they have great potential in pharmaceutical applications. However, the usage of drugs
in suspension and tablet forms can cause unfavorable therapeutic effects, uncontrolled
drug release, and poor self-healing properties, which could limit their practical applica-
tion. These factors underscore the need for a solid-state nano-carrier system for enhanced
biomedical applications.

3. Benefits and Shortcomings of Nanofibers in Biomedical Applications

Electrospinning is a simple and affordable technology that uses an electrostatic volt-
age to fabricate continuous nanoscale fibers from various synthetic, natural, and hybrid
polymeric materials [15] (Figure 1D). Electrospun fibers offer some benefits including a
regulated surface chemistry, a high drug loading capacity, a customizable, microporous mor-
phology, a nanoscale diameter, a huge surface area, and strong mechanical qualities [16,17].
Electrospinning could fabricate tailored nanocomposites that can conform over different
surfaces/substrates and can be engineered to have multiple shapes [18,19]. Nanofibers
could replicate the structural and functional characteristics of the extracellular matrix, and
their surface properties can be altered with surface conjugated ligands to modulate the drug
release, bio-adhesive, and cell-instructive properties [17,20]. Electrospun fibers are being
increasingly recognized in tissue engineering, coatings for biomedical implants, wound
dressings, sustained medication release, and in the encapsulation of different bioactive
substances for different biomedical applications [21–23]. Since most drugs are water sol-
uble and volatile, incorporating a considerable drug into the fibers, while maintaining
their biological activity and physicochemical stability can be problematic for drug delivery
applications.

4. CD-ICs-Incorporated Nanofibrous Membranes in Biomedical Applications

Most medications and bioactive substances exhibit poor heat stability, limited water
solubility, or volatility, and these characteristics hinder the drugs from reaching the ther-
apeutic concentrations for an effective treatment. Drugs loading into electrospun fibers
by blending them in a suspension before the electrospinning process or using specific
conjugated chemistry cannot overcome these limitations [24]. CDs-ICs offer significant
advantages over the non-complexed forms of a drug, but their poor structural and me-
chanical properties could restrict the practical application. Recent studies have depicted
that incorporating CD-ICs into electrospun nanofibers has gained significant attention for
modifying the drug loading capacity, drug release kinetics, and drug performance [25–28]
(Figure 1E–G).

Polymer-free (ciprofloxacin/βCDs and dexamethasone/βCDs) and polycaprolactone
(PCL)-based ICs-embedded supramolecular nanofibers were fabricated in the combined
form via electrospinning. The surface of ICs functionalized nanofibers was further modified
using adhesive nanofibers using catechol chemistry. The results showed that PCL-based
ICs nanofibers possess good mechanical properties, they are convenient for storage, and
they integrate dual drugs in an amorphous form, unlike polymer-free ICs nanofibers. The
designed polymer-based nanocomposite could allow for a single application-based dual
drug (antibiotic and anti-inflammatory) delivery to treat otitis externa [24] (Figure 2A).
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Electrospun PCL nanofibers containing βCD/silver sulfadiazine ICs could be crucial to
wound healing, since they reduce the direct contact between the silver sulfadiazine with
the skin and modulate the drug release, solubility profile, and distribution properties of the
drugs [29].

The efficiency of PCL/βCDs nanofibers as wound odor absorbers was studied us-
ing a wound odor simulation solution. The results demonstrated that βCD-containing
nanofibers were efficient at masking the odor through the formation of ICs with odorants.
The nanocomposite could be used for wound odor absorbance and drug delivery pur-
poses [30]. Silver nanoparticles and dimethyloxallyl glycine were used as the drug loading
component, cellulose acetate was used as a matrix, and CDs were used as a stabilizer and
solubilizer to create the nanofibrous-based wound dressing. The results demonstrated
that the nanofibrous composite exhibited sustained-release properties, and showed sig-
nificant antibacterial activity against Gram-positive and Gram-negative bacteria. The
nanocomposite is biocompatible, and it could be a potential diabetic wound dressing mate-
rial [31]. The combination of chitosan-based electrospun nanofibrous materials containing
curcumin@βCD/AgNP nanoparticles possess synergic antibacterial and wound healing
potential (in a rat model) [32] (Figure 2B). Silver sulfadiazine (SSD) possesses potent an-
tibacterial properties, but it is virtually insoluble in water, which could limit its widespread
use. βCDs/SSD ICs were prepared at various conditions, and the results demonstrated
that such complexation positively modulates the aqueous solubility, bioavailability, and
dissolution profile of the SSD. The ICs were further embedded in PVA nanofibers via
electrospinning. The supramolecular nanofibers improved the drug solubility and the
drug release profile, and they exhibited strong antibacterial effects against E. coli and S.
aureus [33] (Figure 2C).

An HPβCDs-based IC with sulfisoxazole was embedded in hydroxypropyl cellulose
fibers via electrospinning. The results depicted the fabrication of uniform nanofibers
and the amorphous distribution of ICs in the nanocomposite. A higher amount of drugs
were released from the IC-embedded nanofibers than from the sulfisoxazole-embedded
nanofibers. The significant improvement to the drug’s solubility could be attributed to
the incorporated ICs, which could assist in developing promising delivery systems of
hydrophobic drugs [34] (Figure 2D). The ICs between the CD and adamantane-conjugated
epitope were successfully entrapped in the electrospun nanofibers. The nanocomposite
scaffold was investigated against peripheral nerve regeneration. The structural properties
of the nanocomposite promoted cell adhesion and proliferation, while the bioactive epitopes
on the nanofibers’ surfaces guided cellular differentiation. Both the chemical and physical
cues were utilized for an effective neuronal differentiation process [35]. The bioactive glass
nanoparticles with inherent osteogenic properties are modified with βCDs to enhance
their affinity for exogenous estradiol. The estradiol-loaded βCDs functionalized glass
nanoparticles were embedded onto silk fibroin-based nanofibers. The localized delivery of
estradiol could circumvent the systemic adverse effects, and the resultant nanocomposite
enhances the in vitro apatite formation and sustains the release of estradiol. It significantly
enhanced the osteoblast proliferation, differentiation, and matrix-maturation, thus, it could
be crucial in bone reconstruction [36] (Figure 3A). Naproxen has been complexed with
βCDs. The pristine drug and ICs were then incorporated into PCL nanofibers. The drug
release elucidates that the supramolecular nanofibers release a higher amount of naproxen
than the PCL/naproxen nanofibers do due to the solubility enhancement of naproxen by
the CD-ICs [37].

The electrospinning of the hydrocortisone/CDs complex has been introduced to
fabricate a rapid-dissolving oral medication delivery system, without using an additional
polymer matrix. Electrospinning successfully yielded homogenous nanofibrous structures,
and the resultant complex improved the water solubility and distribution of the drugs in
an amorphous state. The nanofibrous membrane could rapidly be dissolved in water and
artificial saliva, therefore, it could be applied as a rapidly dissolving oral drug delivery
system [38]. HPβCDs and tetracycline have been used to form an IC. The resultant IC
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was then blended with pullulan and electrospun to form nanofibers. The electrospinning
yielded defect-free fibers with a high drug loading capacity in an amorphous state. The
supramolecular nanofibers enhanced the water solubility and rapid drug release profile
more in artificial saliva than the simple pullulan/tetracycline nanofibers did. Furthermore,
ICs-functionalized fibers exhibited a strong antibacterial potential against Gram-positive
and Gram-negative bacteria, and they could be an attractive material for rapid-dissolving
oral drug delivery systems [39].
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Figure 2. (A) The schematic diagram show releases of dual biocides from IC incorporated nanofibers
to inhibit and reduce E. coli growth and inflammatory mediators. Reprinted with permission
from [24]. Copyright: (2022) Elsevier. (B) The chitosan-based nanofibrous material functional-
ized with curcumin@βCD/AgNPs nanoparticles. Reprinted with permission from [32]. Copyright:
(2022) Taylor & Francis. (C) Schematics representation of ICs formation between CDs/SSD and their
incorporation into nanofibers. Reprinted with permission from [33]. Copyright: (2019) Taylor &
Francis. (D) HPβCDs/SFS complex was incorporated in hydroxypropyl cellulose nanofibers via
electrospinning to modulate the drug release profile. Reprinted with permission from [34]. Copyright:
(2015) Elsevier.

Eucalyptol/βCDs ICs have been embedded in gellan/polyvinyl alcohol nanofibers to
eradicate antifungal biofilms. The resultant nanocomposite possesses good hydrophilic
properties, facilitates rapid drug release, and inhibits the biofilms of C. albicans and C.
glabrata. The introduced fibrous systems enhanced the antibiofilm activity of eucalyp-
tol to treat fungal infections, and they can be applied as a cost-effective implant coating
biomaterial [40]. The electrospinning of polymer-free (acyclovir/HP-βCD) and polymer-
based materials (acyclovir/polyvinylpyrrolidone) has been carried out to form functional
nanofibers. Both nanocomposites were embedded with high concentrations of acyclovir.
The results show that the polymer-free nanocomposite provided a better drug loading
efficiency (98%) than the polymer-based fibers did (66%), and they showed faster drug
release and disintegration profiles. This could act as a promising strategy for fabricat-
ing a rapid-dissolving drug delivery system in good dosage formulation against viral
infections [41].

A meloxicam/βCDs-functionalized polyvinylpyrrolidone nanofiber was fabricated
using an electrospinning process. The results indicated that the resultant supramolecular
nanocomposite possesses suitable mechanical properties, incorporated the meloxicam in
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an amorphous form, and exhibits faster disintegration. Furthermore, the nanocomposite
membrane exhibits a better rapid drug release potential than the pure meloxicam powder
and commercial meloxicam tablets do. Furthermore, the nanocomposite remained stable
for up to 6 months, and it could rapidly disintegrate in the mouth, and it could mask
the bitter taste of drugs, and therefore, it could be a good candidate for fast dissolving
drug delivery systems for bitter medicines [42]. βCDs and thymol were self-assembled
to form a water-soluble IC. The pristine thymol and resultant ICs were separately embed-
ded into cellulose acetate nanofibers via electrospinning. The results demonstrated that
ICs-functionalized fibrous membranes exhibited sustained thymol release and a lasting
antibacterial potential against S. aureus, and they showed good cytocompatibility. The
IC-embedded nanocomposite could be an attractive candidate for a wound dressing mate-
rial [43].
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Figure 3. (A) The bioactive and osteogenic glass nanoparticles (MBGNPs) are conjugated with βCDs
(CD-MBGNPs) to enhance their encapsulation affinity for exogenous estradiol. Reprinted with
permission from [36]. Copyright: (2018) Royal Society of Chemistry. (B) are fabricated via electro-
spinning. The βCDs conjugated HAp is coated onto the surface of poly(L-lactic acid)/gelatin-based
nanofibers through interaction between βCDs and adamantane, and at the latter stage, simvastatin
is loaded into the remaining βCD. Reprinted with permission from [44]. Copyright: (2016) Wiley-
VCH. (C) The formation of a macroscale fibrous hydrogel scaffold is achieved as a consequence of
interactions involving adamantane and CDs on complimentary bioactive nanofibers. Reprinted with
permission from [45]. Copyright: (2021) American Chemical Society.

Poly(L-lactic acid)/gelatin nanofibers were fabricated via electrospinning. The βCDs-
conjugated hydroxyapatite was coated onto the surface of the nanofiber via a specific inter-
action between the βCDs and adamantane. Simvastatin (osteogenic drug) was then loaded
into the remaining βCD, and overall, the results demonstrate that the simvastatin-loaded
nanocomposite better promoted mineralization, osteogenic gene expression, and bone
reconstruction [44] (Figure 3B). The engineering design brings together hyaluronic acid elec-
trospun hydrogel nanofiber segments that are functionalized with either an adamantane-
based guest or βCD-based host supramolecular moieties. The host–guest interaction creates
a shear-thinning and self-healing hydrogel fiber network via the guest−host complexa-
tion [45] (Figure 3C).
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The electrospun nanofibers incorporated with IC of niclosamide and HPβCDs were
produced using pH-responsive polymer. The IC-embedded nanocomposite disintegrated at
pH values that were greater than six, and it had the potential to be utilized for the targeted
and regulated release of niclosamide to the colon [46]. Overall, the CD-based nanofibers
could carry more significant amounts of drugs, and they are more crucial for rapidly
dissolving oral medication delivery systems compared to conventional drug formulations.
Furthermore, the structural, mechanical, and functional features of the fibrous composite
could control the drug release properties (according to the desired application) and regulate
the cell function. The supramolecular nanocomposite could maximize site-specific drug
targeting for tissue engineering, cancer treatment, and other biomedical applications.

5. Conclusions and Future Perspectives

There are numerous factors favoring CD-based ICs and electrospun nanofibers in
biomedical applications. However, the use of pure CD-IC is unsuited for biomedical
applications due to their poor structural and physicochemical properties. On the other hand,
since most drugs are water insoluble, the incorporation of high concentrations of drugs into
the nanofibrous composite, while maintaining their functional activity, can be problematic
for biomedical applications. Considering the properties of the CD-ICs and nanofibers,
our review highlights that incorporating CD-ICs into the nanofiber matrix is a simple
procedure to engineer drug-encapsulated fibers, since distinct properties and synergistic
effects can be obtained. The supramolecular nanocomposite has been investigated as a
drug delivery system. It is suited for biomedical applications because it can assemble into
different forms, engineer diverse assemblies such as nanoparticles, structurally tune the
drug release mechanism, and it can integrate many types of drugs. Furthermore, it can
respond to physiological cues, and maximize the applicability of the nanocomposite in
a range of biomedical applications. Most of these investigations are still in the proof-of-
concept stage, nevertheless, the future of supramolecular nanofibers in the biomedical
domain is promising. There is a need to strengthen the biodistribution, biodegradability,
biosafety, and stimuli-responsive composite design for enhanced biomedical applications.
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