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Abstract: In this work, we isolated a pentadentate [P2N2S] phosphine-thiocarbohydrazone ligand
H2L with a bulky phosphine group in both linker domains that undergoes an oxidation process
in solution. This ligand was synthesized by a direct reaction between two equivalents of 2-diphe-
nylphosphinebenzaldehyde and one equivalent of thiocarbohydrazide. Two types of crystals de-rived
from this ligand were obtained and studied using X-ray diffraction spectroscopy. One structure
corresponds to the monooxidized ligand H2L(O) while the other indicates a dioxidation of the
compound, H2L(OO).
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1. Introduction

Thiocarbohydrazones are compounds of great interest in health-related fields such as
pharmacology, as several studies have shown that these compounds possess promising
antifungal [1], antimicrobial [1] and even antitumoral properties [2]. Nevertheless, the
co-ordination chemistry of this type of ligand has been less studied than that of its thiosemi-
carbazone analogues.

In general, the thiocarbohydrazones found in the literature act as [NS] or [ONS] do-nor
ligands, giving rise to structures of different nuclearities [3]. However, our group recently
reported the first examples of complexes derived from a phosphine-thiocarbohydrazone
ligand, H2L [4], confirming that the presence of bulky groups gives rise to the formation of
mesocate species. At this point, we decided to synthesize the phosphine-thiocarbohydrazone
ligand H2L with the aim of obtaining the first example of a [NSP] thiocarbohydrazone
crystal structure.

2. Experimental Section

The [P2N2S] phosphine-thiocarbohydrazone ligand H2L was obtained by means of a
condensation reaction, as reported before [4]. Yellow X-ray-quality crystals of the monooxi-
dized ligand H2L(O)·CH3CH2OH were collected by slow evaporation of the mother liquors
after 24 h.

With the aim of obtaining the non-oxidized crystal structure of the ligand H2L, re-
crystallization experiments of the solid obtained during the synthesis were carried out
using acetonitrile, acetone, methanol, or a mixture of dichloromethane–methanol solvents.
Thus, X-ray-quality crystals of H2L(OO)·3CH3CN were obtained by recrystallization of the
solid in acetonitrile. It should be noted that H2L(OO)·3CH3CN crystals were obtained after
7 days.
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Crystallographic Data

[H2L(O)]·CH3CH2OH: C41H38N4O1.30P2S, MW: 701.55; crystal dimensions: 0.36 ×
0.18 × 0.11; triclinic; P1; a = 9.9576(5); b = 10.3691(5); c = 18.9587(9) Å; α = 92.257(3);
β = 98.607(3); γ = 107.014(3) 0; V = 1843.58(16) Å3; Z = 2; µ = 0.213 mm−1; measured
reflections = 53,678; independent reflections [Rint] = 8729 [0.0529]; R = 0.0603; wR = 0.1773.

[H2L(OO)]·3CH3CN: [C45H41N7O1.75P2S, MW: 801.85; crystal dimensions: 0.25 × 0.21
× 0.20; triclinic; P1; a = 9.2907(4); b = 12.1770(5); c = 18.5702(8) Å; α = 88.132(2); β = 83.987(2);
γ = 74.965(2) 0; V = 2017.79(15) Å3; Z = 2; µ = 0.207 mm−1; measured reflections = 16,387;
independent reflections [Rint] = 7271 [0.0573]; R = 0.0614; wR = 0.1674.

3. Results and Discussion

Slow evaporation of the mother liquors from the ligand synthesis and recrystallization
of the ligand solid in acetonitrile allowed us to obtain yellow crystals suitable for X-
ray diffraction studies. The structures revealed the monooxidized H2L(O)·CH3CH2OH
(Figure 1) and the dioxidized H2L(OO)·3CH3CN (Figure 2) ligand structures, respectively.
Both crystal structures are very similar and will therefore be discussed together below.
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The compounds H2L(O)·CH3CH2OH (Figure 1) and H2L(OO)·3CH3CN (Figure 2)
crystallized solvated by one molecule of ethanol and three molecules of acetonitrile, re-
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spectively. In both ligands, the two imino-phosphine branches adopt an E configuration
relative to the imino bonds and a syn-type conformation, with the two phosphine branches
oriented towards the same side. The different arrangement of the thioamidic NH gives
rise to a syn conformation in the C=S bond with respect to the N3–H3 bond and an anti
conformation with respect to the N2–H2 bond.

The conformation adopted by the ligands is mainly conditioned by the existence of
moderate intramolecular hydrogen bonds between one of the thioamide nitrogens and
the oxygen atom. In addition, weak intermolecular hydrogen bonds exist in both ligands.
In the case of the monooxidized ligand, H2L(O)·CH3CH2OH, these interactions occur
be-tween the sulfur atom of one ligand molecule and one of the thioamide nitrogens of
another ligand unit (Figure 3). In the case of the dioxidized ligand, H2L(OO)·3CH3CN, a
hydrogen bond is observed between one of the thioamide nitrogens and the nitrogen of
one of the solvating acetonitrile molecules (Figure 4).
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The main bond lengths, C=N, N-N and C-S, given in Tables 1 and 2 are in the expected
range for thiocarbohydrazone ligands and do not need further discussion [5].
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Table 1. Selected bond lengths (Å) for H2L(O)·CH3CH2OH.

Main Bond Distances (Å)

C1—N1 1.456 (4) N2—N3 1.387 (3)
N1—C2 1.338 (4) N3—C4 1.288 (4)
C2—N2 1.365 (4) C8—O1 1.399 (3)
N6—C20 1.451 (4) C39—S4 1.695 (3)

Table 2. Selected bond lengths (Å) for H2L(OO)·3CH3CN.

Main Bond Distances (Å)

C19—N1 1.280 (4) C20—S1 1.674 (4)
C20—N2 1.352 (4) C21—N4 1.278 (4)
C20—N3 1.348 (4) N1—N2 1.368 (4)
P2—O1 1.578 (5) N3—N4 1.378 (4)
P1—O2 1.478 (3)

4. Conclusions

The obtainment of two different crystal structures derived from the phosphine-thio-
carbohydrazone ligand H2L lead us to discover that the compound undergoes an oxidation
process in solution. It is clear from the crystal structures obtained that both solvent and
time have an effect on the final crystal structure of the ligand and therefore on the oxidation
process; thus, we obtained the monooxidized structure, H2L(O)·CH3CH2OH, in ethanol
after 24 h, and the dioxidized structure, H2L(OO)·3CH3CN, in acetonitrile after 1 week.
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