Synthesis and X-ray Diffraction of Cyclopalladated Compounds Derived from Imine Ligands ${ }^{\dagger}$

Basma Al Janabi *, Juan M. Ortigueira (D) and Jose Manuel Vila
Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, Avd. das Ciencias s/n, 15782 Santiago de compostela, Spain
* Correspondence: basma.raad@usc.es
\dagger Presented at the 26th International Electronic Conference on Synthetic Organic Chemistry, 15-30 November 2022; Available online: https:/ / sciforum.net/event/ecsoc-26.

Citation: Al Janabi, B.; Ortigueira, J.M.; Vila, J.M. Synthesis and X-ray Diffraction of Cyclopalladated Compounds Derived from Imine Ligands. Chem. Proc. 2022, 12, 52. https://doi.org/10.3390/ ecsoc-26-13699

Academic Editor: Julio A. Seijas

Published: 18 November 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The crystal structures of mononuclear cyclopalladated compounds with phosphine ligands are investigated. The reactions of the five-membered cyclopalladated dinuclear complexes $[\operatorname{Pd}(\mathrm{L})$ $(\mu-\mathrm{Cl})]_{2}$ with the monophosphine ligand $\left(\mathrm{PPh}_{3}\right)$ and diphosphine ligand (dppm) in the molar ratio of 1:2, and ammonium hexafluoride in the case of compound b, result in the mononuclear complexes $\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}\left\{\mathrm{PPh}_{3}\right\}[\mathrm{Cl}](\mathbf{1 a})\right.$ and $\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right.\right.$ $\left.\left.\mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}\right\}\right][\mathrm{PF} 6](\mathbf{1 b})$.

Keywords: cyclometallated; palladium; imine; X-ray diffraction

1. Introduction

The possible application of palladium compounds in medicine has become a particularly active and attractive study issue in bioinorganic and biological chemistry [1]. The use of chelating ligands in the development of physiologically active palladium compounds with improved kinetic stability is a well-established design principle [2]. Since the existence of a strong $\mathrm{Pd}-\mathrm{C}$ bond in the $[\mathrm{C}, \mathrm{N}]$ palladacycle enhances the stability of the organometallic complex, orthometallated N-donor ligands, such as imines, have been successfully employed for this purpose [3]. The nitrogen-donor ligands, palladacycles, are gaining popularity due to their numerous applications in organic synthesis, antitumoral drug synthesis, asymmetric synthesis, intermolecular aromatic $\mathrm{C}-\mathrm{H}$ bond activation, synthesis and reactivity of organometallic complexes with biologically important ligands, and drug delivery [3]. Therefore, we report herein the synthesis and characterization of cyclopalladated compounds of the general formula $\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{HC}(\mathrm{H})=\mathrm{N}-\mathrm{R}\right\}\{\mathrm{R}=\mathrm{Cy}\right.$, $\left.2,4,6-\mathrm{MeC}_{6} \mathrm{H}_{2}\right\}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$] with PPh_{3} and dppm ligands.

2. Result and Discussion

The treatment of the halogen-bridged ligand compound a with the PPh_{3} in the molar ratio of 1:2 produced a monomer palladium(II) compound with PPh_{3} ligand, and the treatment of compound \mathbf{b} with the diphosphine dppm and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in a 1:2 molar ratio gave a monomer palladium(II) compound with phosphine chelated ligand (Scheme 1). The compounds were characterized by using ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In the ${ }^{1} \mathrm{H}$ NMR, the proton $\mathrm{H}(5)$ for compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ appears as a doublet by coupling to ${ }^{31} \mathrm{P}$. A doublet resonance of $\mathrm{HC}=\mathrm{N}$ proton is coupled to ${ }^{31} \mathrm{P}$ nucleus trans to nitrogen for compound 1a at $8.26 \mathrm{ppm}\left[{ }^{4} J(\mathrm{PHi})=9.1 \mathrm{~Hz}\right]$ and for compound $\mathbf{1 b}$ at $8.20 \mathrm{ppm}\left[{ }^{4} J(\mathrm{PHi})=7.6 \mathrm{~Hz}\right]$. The $\mathrm{OMe}(\mathrm{C} 4) \mathrm{NMR}$ resonance for compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ is shifted to a lower frequency due to the shielding effect of the phosphine's phenyl ring. The two inequivalent $\mathrm{OMe}(\mathrm{C} 4)$ groups have two different resonances in an antiparallel configuration, as one of them is not impacted by the phosphine's phenyl ring. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$, a singlet ascribed to the coupling of compound 1a to the ${ }^{31} \mathrm{P}$ nucleus is shifted to a lower field ca. 43 ppm ,
which is consistent with a phosphorus trans to nitrogen arrangement. In contrast, for compound $\mathbf{1 b}$, the two inequivalent phosphorus nuclei are represented by two doublets at $-4.33[\mathrm{~d}, J=62.9 \mathrm{~Hz}]$ and $-27.53[\mathrm{~d}, J=62.9 \mathrm{~Hz}]$. The phosphorus nucleus trans to the phenyl carbon $C(6)$ has the lower-frequency doublet, while the phosphorus nucleus trans to the imine nitrogen has the higher-frequency doublet. This is predicated on the notion that a ligand with a higher trans influence shifts the phosphorus nucleus trans ${ }^{31} \mathrm{P}$ resonance to a lower frequency.

Scheme 1. (i) PPh_{3}, r.t, 3 h ; (ii) dppm, $\mathrm{NH}_{4} \mathrm{PF}_{6}$, r.t, 3 h .

3. X-ray Diffraction

The mononuclear molecules (one molecule per asymmetric unit) are present in 1a (Figure 1) and $\mathbf{1 b}$, and a hexafluorophosphate anion is present in the case of the crystal structure $\mathbf{1 b}$ (Figure 2). The coordination sphere enclosing the palladium atom in the crystal structures $\mathbf{1 a}$ and $\mathbf{1 b}$ is formed by a nitrogen atom from the imine group, an ortho carbon atom from the phenyl ring (C 1), a phosphor atom from a PPh_{3}, a chlorine atom in the case of the crystal structure of $\mathbf{1 a}$, and two phosphorus atoms from a chelating dppm in the case of the crystal structure of $\mathbf{1 b}$. The Pd1-C1, which is $2.027(5) \AA$ for $\mathbf{1 a}$ and $2.036(3) \AA$ for $\mathbf{1 b}$, is in agreement with the partial multiple-bond character of the $\mathrm{Pd}-\mathrm{C}$ bond [4]. The $\mathrm{Pd}(1)-\mathrm{N}(1)$ bond length, which is $2.112(5) \AA$ for $\mathbf{1 a}$ and $2.096(2) \AA$ for $\mathbf{1 b}$, is longer than the single bond predicted value of 2.011, which has an impact on the phosphine ligand's trans effect [5]. It can be noticed in that there is an intermolecular interaction for compound 1 b , resulting in a $\mathrm{C}_{\text {sp } 3} \cdots \mathrm{H} \cdots \mathrm{C}$ weak interaction. The bond and angel interaction $\mathrm{C} 38 \cdots \mathrm{H} 10 \cdots \mathrm{C} 10$ are $2.838 \AA$ and 113.36°, respectively, and the C $38 \cdots$ C10 bond interaction is $3.331 \AA$ (Figure 3). Table S1 lists specifics regarding the structure's refinement and the final reliability factors.

Figure 1. Molecular structure of compound 1a (Thermal ellipsoid at the probability of 50%). Selected bond distances and angles: Pd1-N1 2.112(5), Pd1-C1 2.027(5), Pd1-P1 2.262(14), Pd1-Cl1 2.379(13), C1-Pd1-N1 81.41(2), C1-Pd1-P1 97.15(16), N1-Pd1-Cl1 93.07(13), and P1-Pd1-Cl1 89.95(5).

Figure 2. Molecular structure of compound $\mathbf{1 b}$ (Thermal ellipsoid at the probability of 50%). Selected bond distances and angles: $\mathrm{Pd}(1)-\mathrm{N}(1) 2.096(2), \mathrm{Pd}(1)-\mathrm{C}(1) 2.036(3), \operatorname{Pd}(1)-\mathrm{P}(1) 2.251(8), \operatorname{Pd}(1)-\mathrm{P}(2)$ $2.408(8), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{P}(1) 179.49(7), \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1) 80.47(11), \mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2) 70.88(3), \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$ 108.80(7), $\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(1) 99.86(9)$, and $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(2) 170.54(9)$.

Figure 3. Intermolecular interaction $\left(\mathrm{C}_{\mathrm{Sp} 3} \cdots \mathrm{H} \cdots \mathrm{C}\right)$ of compound $\mathbf{1 b}$.

4. Experimental Part

Compounds \mathbf{a} and \mathbf{b} were prepared in the same manner [6].

4.1. Synthesis of $\left[P d\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{HC}(\mathrm{H})=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{2}\right\}\left\{\mathrm{PPh}_{3}\right\}\right]$. (1a)

A total of ($25 \mathrm{mg}, 0.029 \mathrm{mmol}$) of compound a was added to acetone $\left(10 \mathrm{~cm}^{3}\right)$. The required quantity of triphenylphosphine was added (in a 1:2 molar ratio) and the mixture was agitated for 3 h at room temperature. The solution was reduced to a low volume, and the solid was recrystallized from dichloromethane/n-Hexane and dried in vacuo. The yield was 50%. IR $\left.=v(\mathrm{C}=\mathrm{N}) 1569 \mathrm{~cm}^{-1}, v(\mathrm{Pd}-\mathrm{Cl}) 298 \mathrm{~cm}^{-1} . \mathrm{NMR}^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta 8.26$ $\left(\mathrm{d},{ }^{4} J(\mathrm{PHi})=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Hi}\right), 7.67\left(\mathrm{t},{ }^{3} J(\mathrm{HH})=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.35\left(\mathrm{t},{ }^{3} J(\mathrm{HH})=7.6 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{HH})=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right), 5.65\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H} 5 \mathrm{P})=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.33(\mathrm{~m}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{HH})=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Cy}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.61$ (s,3H,OMe), 2.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.17-0.79 (m, 10H, Cy) (Figure S1). ${ }^{31} \mathrm{P}$ NMR ($\delta \mathrm{ppm}, \mathrm{CDCl}_{3}$) $\delta 42.86$.

4.2. Synthesis of $\left.\left[P d\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{HC}(H)=N-2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}\right\}\right]\left(\mathrm{PF}_{6}\right)$. (1b)

A total of ($25 \mathrm{mg}, 0.025 \mathrm{mmol}$) of compound \mathbf{b} was added to acetone $\left(10 \mathrm{~cm}^{3}\right)$. The appropriate amounts of dppm and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ were added in a molar ratio of (1:2), and the mixture was stirred for 3 h at room temperature. The orange precipitate formed was filtered off, recrystallized from dichloromethane/n-Hexane, and dried in vacuo. The yield was 85%. $\mathrm{IR}=v(\mathrm{C}=\mathrm{N}) 1565 \mathrm{~cm}^{-1} . \mathrm{NMR}{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{PHi})=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{Hi}), 8.06-6.99\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{PPh}_{2}\right), 6.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ha}, \mathrm{Ha}^{\prime}\right), 6.03\left(\mathrm{dd},{ }^{4} \mathrm{~J}\left(\mathrm{H} 5 \mathrm{P}_{\text {trans }}\right)=10.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}\right.$ $\left.\left(\mathrm{H}_{5} \mathrm{P}_{\mathrm{cis}}\right)=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{HP})=12.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.79 (s, 3H, OMe), 3.17 (s, 3H, OMe), 2.25 (s, 3H, Me), 2.18 (s, 6H, Me ${ }^{*}$) (Figure S2). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)-6.0[\mathrm{~d}, J=66.5],-30[\mathrm{~d}, J=66.5],-141\left[\mathrm{~h}, \mathrm{PF}_{6}{ }^{-}\right]$.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/ 10.3390 /ecsoc-26-13699/s1, Figure S1: ${ }^{1} \mathrm{H}$ NMR of compound 1a in $\mathrm{CDCl}_{3,}$, Figure S2: ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 b}$ in CDCl_{3}, Table S 1 : Crystal data and structure refinement for compounds $\mathbf{1 a}$ and $\mathbf{1 b}$.

Author Contributions: Formal analysis, B.A.J.; Methodology, B.A.J.; Writing original draft, B.A.J.; writing-review and editing, B.A.J., J.M.V. and J.M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Xunta de Galicia. GRC2019/14.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: We would like to thank the Xunta de Galicia (Galicia, Spain) and the Competitive Reference Groups GRC2019/14 for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alam, M.N.; Huq, F. Comprehensive review on tumour active palladium compounds and structure-activity relationships. Coord. Chem. Rev. 2016, 316, 36-67. [CrossRef]
2. Garoufis, A.; Hadjikakou, S.; Hadjiliadis, N. Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 2009, 253, 1384-1397. [CrossRef]
3. Kumbhar, A. Functionalized nitrogen ligands (CN) for palladium catalyzed cross-coupling reactions (part II). J. Organomet. Chem. 2019, 881, 79-129. [CrossRef]
4. Velasques, J.M.; de Souza, R.F.; Silva, D.E.; Farias, R.L.; Zanetti, R.D.; Moreira, M.B.; Ellena, J.; Pereira, J.C.; Mauro, A.E.; Oliveira, A.B.; et al. Orthopalladated tetralone oxime compounds bearing tertiary phosphines: Synthesis, structure, biological and in silico studies. J. Organomet. Chem. 2022, 958, 122184. [CrossRef]
5. Suzuki, T.; Morikawa, A.; Kashiwabara, K. Preparation and characterization of nickel (II), palladium (II), and platinum (II) complexes containing (2-aminoethyl) dimethylphosphine or the related didentate phosphine ligands. Bull. Chem. Soc. Jpn. 1996, 69, 2539-2548. [CrossRef]
6. Mosteiro, R.; Fernández, A.; López-Torres, M.; Vázquez-García, D.; Suárez, A.; Fernández, J.J.; Vila, J.M. Nucleophilic addition of 1,3-dicarbonyl compounds as a route to functionalized cyclopalladated complexes with chelated 1, 1-bis (diphenylphosphino) ethene. New J. Chem. 2002, 26, 1425-1432. [CrossRef]
