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Abstract: Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared
as a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and
acridinedione derivatives. High efficiency, short reaction time, and easy separation are significant
features that are reasons for using g-C3N4@L-arginine as a catalyst in one-pot multicomponent
reactions. Synthesized nanocatalyst was detected by numerous analyses, such as FE-SEM (Field
Emission Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy), XRD (X-Ray
Diffraction analysis), TGA (Thermo Gravimetric Analysis), and FT-IR (Fourier Transform Infrared
Spectroscopy). G-C3N4@L-arginine nanocatalyst was reused 5 times in the reaction with no apparent
decrease in reaction yield, which shows acceptable recyclability.

Keywords: g-C3N4–pyranopyrazole; acridinedione; multi-component; L-arginine

1. Introduction

In the last decades, heterogeneous catalysts have been noticed because of large-scale
production and selective product formation [1,2]. G-C3N4 is a widely used support for cat-
alytic entities due to high physical and thermal stability, low density, versatile performance,
and recyclability. Moreover, the preparation of g-C3N4 is mostly performed by Cyanamid,
urea, dicyanamide, melamine, and thiourea as the precursor [3]. To increase the efficiency
of the catalytic performance of g-C3N4 in organic reactions, it is suggested to modify it
with organic compounds [4–8].

Significantly, L-arginine is a semi-essential amino acid in living organisms [9], while
the guanidine group in L-arginine is the precursor for synthesizing nitrogen derivatives.
Using L-arginine with g-C3N4 as a catalyst support can decrease the cost and toxicity.
Among other benefits of composite productions with L-arginine, it should be mentioned
that making composite with this amino acid can increase thermal stability and molar heat
capacities. Although, on the other hand, it can reduce the thermal expansion coefficient.
Moreover, the utilization of composites is one of the best ways for synthesizing hetero-
cyclic compounds [10–13], while heterocyclic compounds have been considered essential
groups of organic materials. In addition, they have biological activities which could be
effective in the treatment of different diseases. What makes these compounds more im-
portant than others is their application in various fields such as medicines, veterinary
products, disinfectants, and antioxidants. There are several ways of synthesizing hete-
rocyclic compounds including the multi-stages and one-pot multicomponent reactions.
Lately, projects indicate that multicomponent reactions could be the best way for preparing
heterocyclic compounds.
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Multicomponent reactions have been mostly used for producing heterocyclic com-
pounds because of their advantages including step efficiency, atom economy, and reduc-
ing the waste production [14–18]. Pyranopyrazoles are nitrogen-containing heterocyclic
compounds with various properties such as anti-cancer, anti-inflammatory, anti-bacterial,
antioxidant, and antihypertensive. Knoevenagel condensation, Micheal addition, and
cyclization are the main procedures for making pyranopyrazoles derivatives. Various
catalysts can be utilized to prepare pyranopyrazole and its derivatives by multicomponent
reactions such as cetyltrimethylammonium chloride (CTACl), montmorillonite K10, agave
leaf ash, cytosine@MCM-41, Et3N, and PTSA [19–24].

Other heterocyclic compounds with biological activities that can be produced with
multicomponent reactions are Acridinedione derivatives [25]. They are nitrogen-mediated
heterocyclic compounds with a vast spectrum of pharmaceutical and biological activities,
namely anti-tumor, SIRT1 inhibitors, anticancer, and antimicrobial agents [26–29]. There are
different precursors such as heterogeneous catalysts for preparing acridinedione, including
f-MWCNT, Amberlyst -15, CTAB, and Proline [30–33]. Usually, recent methods can cover
problems of the latest projects such as harsh conditions, long reaction time, and using toxic
solvents. Therefore, new methods for synthesizing pyranopyrazole and acridinedione
derivatives are a critical challenge in chemistry society. Consequently, in this research, we
have synthesized g-C3N4@L-arginine nanocomposite and applied it as a catalyst in the
synthesizing pyranopyrazole and acridinedione derivatives in a high yield. The schematic
of g-C3N4@L-arginine is shown in Scheme 1.
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Scheme 1. Schematic of g-C3N4@L-arginine.

2. Experimental
2.1. Materials

All chemicals were obtained from Sigma–Aldrich and Merck companies. Many analy-
ses have been performed, including Fourier Transform Infrared Spectroscopy (FT-IR), which
was recorded by Tensor27 for detecting functional groups of products; Thermal Gravimet-
ric Analysis (TGA) under argon atmosphere was taken by STA 504, which displayed the
thermal stability of nanocatalyst; Nuclear Magnetic Resonance (NMR) with Varian-Inova
500 MHz, X-Ray Powder Diffraction (XRD) was performed by Dron-8; Energy-Dispersive
X-ray (EDX) Numerix DXP–X10P was employed for indicating the existence of elements of
synthesized nanocatalyst; and Field Emission Scanning Electron Microscopy (FE-SEM) with
TESCAN-MIRA lll was used for displaying the morphology of synthesized nanocatalyst.
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2.2. Preparation of Bulk C3N4 and g-C3N4

Melamine is precursor for preparing bulk carbon nitride, which was heated to 550 ◦C
temperature by the ramp of 2.5 ◦C.min−1 in a furnace for 4 h. Eventually, a yellow powder
was formed. Then, for preparing g-C3N4, 1.0 g bulk C3N4 was stirred with 20 mL H2SO4 at
90 ◦C for 5 h. Afterward, the mixture was diluted with 200 mL ethanol and stirred at room
temperature for 2 h. Then, the mixture was dispersed in 100 mL water/isopropanol (1:1),
sonicated for 6 h, and centrifuged to obtain g-C3N4.

2.3. Preparation of g-C3N4@L-Arginine

A total of (1.0 g) g-C3N4 with (20.0 mL) dry toluene was dispersed. Then, (2.0 mL)
1,3-dibromopropane was poured into the final mixture and refluxed for 24 h under an
N2 atmosphere. After filtration and washing with ethyl acetate, the product was dried at
room temperature. The final product was dissolved in a mixture of water and methanol
(1:1). Then, each of the following ingredients was added, respectively: L-arginine (1 mmol),
K2CO3 (1.0 mmol), and NaI (1.0 mmol)). Afterward, it was stirred for 24 h at room
temperature, washed with water and methanol, then dried at 80 ◦C.

2.4. Synthesizing Acridinedione Derivatives

A mixture of dimedone (2 mmol), ammonium acetate (1 mmol), aromatic aldehyde
(1 mmol), ethanol (5 mL), and catalyst (0.18 mol %) was poured into a flask and refluxed
for the appropriate time. The reaction progress was monitored by TLC. After completion of
the reaction, the mixture was cooled to room temperature, the catalyst was filtered, and the
intended product was obtained by crystallization.

2.5. Synthesizing Pyranopyrazole Derivatives

A mixture of aldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), hydrazine hydrate
(1.0 mmol), malononitrile (1.0 mmol), catalyst (0.18 mol %), and ethanol (2.0 mL) was
poured into a 25 mL round bottom flask and refluxed for the appropriate time. The reaction
progress was monitored by TLC. After completion of the reaction, the mixture was cooled
to room temperature, the catalyst was filtered, and the intended product was obtained
by crystallization.

3. Results and Discussion

FT-IR spectra of a) g-C3N4, b) modified g-C3N4, and c) g-C3N4@L-arginine are shown
in Figure 1. In Figure 1a, there is a broad peak around 3000–3300 cm−1 for N-H group
stretching vibrations which is related to H- bonding or actually the existence of the OH
group of water adsorption by g-C3N4 nanosheets. Figure 1b demonstrates the modified
g-C3N4 nanosheets around 3000–2800 cm−1 which is related to C-H stretching vibra-
tions. In Figure 1c, stretching vibrations of C=O and C-O were shown at (1705 cm−1) and
(1320–1210 cm−1), respectively. A peak around 1602 cm−1 indicates carbon double bond
nitrogen and its stretching vibrations. Values of 1303 and 1082 cm−1 are related to the
C-N bond stretching vibrations which are formed from triazine and N-H groups. The C-N
stretching vibrations in the ring are significantly revealed at 1448 and 1379 cm−1. A value
of 786 cm−1 was shown because of tri-s-triazine vibrations. According to the mentioned
peaks, g-C3N4@L-arginine was synthesized [3,4].
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Figure 1. FT-IR spectra of (a) g-C3N4, (b) modified g-C3N4, and (c) g-C3N4@L-arginine. 

EDX analysis determined the presence of elements in a) g-C3N4 nanosheets, b) modi-
fied g-C3N4, and (c) g-C3N4@L-arginine. Nitrogen and Carbon elements in nanosheet g-
C3N4 are visible in Figure 2a. In Figure 2b, the existence of the Br element would confirm 
the modification of g-C3N4 nanosheets. Moreover, Figure 2c revealed the presence of car-
bon, nitrogen, and oxygen, which confirm the synthesizing of g-C3N4@L-arginine. 

 

Figure 1. FT-IR spectra of (a) g-C3N4, (b) modified g-C3N4, and (c) g-C3N4@L-arginine.

EDX analysis determined the presence of elements in (a) g-C3N4 nanosheets, (b) mod-
ified g-C3N4, and (c) g-C3N4@L-arginine. Nitrogen and Carbon elements in nanosheet
g-C3N4 are visible in Figure 2a. In Figure 2b, the existence of the Br element would confirm
the modification of g-C3N4 nanosheets. Moreover, Figure 2c revealed the presence of
carbon, nitrogen, and oxygen, which confirm the synthesizing of g-C3N4@L-arginine.
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Figure 2. EDX spectra of (a) g-C3N4 nanosheets, (b) modified g-C3N4, and (c) g-C3N4@L-arginine.

The morphology of g-C3N4@L-arginine nanocatalyst was studied by FE-SEM anal-
ysis in two scales (200 nm and 1 µm). Graphitic and nanosheet properties of C3N4 are
apparent based on Figure 3. It can be concluded that the g-C3N4@L-arginine nanocatalyst
synthesizing has been successfully performed by observing the g-C3N4 surface roughness.

The XRD of g-C3N4 nanosheets and g-C3N4@L-arginine have been shown in Figure 4a,b.
XRD pattern of nanosheet g-C3N4 in part (a) indicates the diffraction angles of 2θ = 15.96◦

and 2θ = 27.69◦, which approve the synthesizing of g-C3N4 [34]. Diffraction angles of
2θ = 30.97◦, 23.60◦, 12.21◦, 10.85◦, 6.07◦ in XRD pasttern part (b) indicate the L-arginine on
the surface of g-C3N4@L-arginine (JCPDS card no. 00–004-0180).
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In Figure 5, g-C3N4@L-arginine thermal stability was shown at the range from 50 to
800 ◦C. The weight ratio has decreased gradually from 100 to 200 ◦C because of the removal
of absorbed water from g-C3N4@L-arginine. L-arginine’s separation was observed from
200 to 400 ◦C. There is a dramatic decrease from 400 to 700 ◦C which is related to g-C3N4
nanosheet decomposition.
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3.1. Application

The catalytic activity of produced heterogeneous nanocatalyst g-C3N4@L-arginine
was studied for multi-component reactions. The optimum reaction conditions for synthe-
sizing acridinedione and pyranopyrazole derivatives were evaluated. The synthesis of
acridinedione derivatives was performed by using dimedone (2 mmol), 4-chloro benzalde-
hyde (1 mmol), ammonium acetate (1 mmol), ethanol (5 mL), and catalyst (0.18 mol %)
(model reaction 1). In addition, pyranopyrazole derivatives were produced by malononi-
trile (1.0 mmol), 4-chloro benzaldehyde (1.0 mmol), hydrazine hydrate (1.0 mmol), ethyl
acetoacetate (1.0 mmol), ethanol (2.0 mL), and catalyst (0.18 mol %) (model reaction 2). The
possibility of aldol reaction in aliphatic aldehydes would be the significant reason for using
aromatic aldehydes compared to aliphatic aldehydes. Moreover, the reaction has been mon-
itored by thin-layer chromatography (TLC). The model reactions have been investigated
under different and convertible conditions. Initially, the reaction was performed with no
catalyst at two different temperatures and the same reaction time (20 min). There was no
acceptable efficiency as expected for both reactions (Table 1, entries 1–2). After using the
catalyst (Table 1, entries 3–4), the desired products were produced in very small quantities
at two different temperatures with the same environmental solvent. By using the catalyst
at 80 ◦C for 20 min, there was a significant yield and efficiency of up to 92% for the first
reaction and 91% for the second one (Table 1, entry 5). Moreover, despite increasing the
reaction time up to 30 min, no noteworthy changes in the efficiency were observed (Table 1,
entry 6).

In addition, changing the used solvent to water with the same condition as Table 1-
entry 5 can decrease the efficiency of reactions 1 and 2 to 65% and 68%, respectively
(Table 1, entry 7). If the solvent of the reactions changed to methanol and acetonitrile
(Table 1, entries 8 and 9), the reaction yield, in comparison with entry 5, will be increased
and decreased, respectively. Likewise, the model reactions were performed by g-C3N4
(0.18 mol %) and L-arginine (0.18 mol %) with the same conditions, while the yield of the
final products was decreased.

After optimization, different aromatic aldehydes were used to show the merits of
g-C3N4@L-arginine catalytic activity and different pyranopyrazole and acridinedione
derivatives were synthesized (Tables 2 and 3).



Chem. Proc. 2022, 12, 50 8 of 17

Table 1. Optimization of g-C3N4@L-arginine for reaction 1 and 2.

Entry Catalyst Temprature
(◦C)

Time
(min) Solvent Yield (%)

(Reaction 1)
Yield (%)

(Reaction 2)

1 - 80 20 EtOH - -
2 - 80 20 EtOH - -
3 g-C3N4@L-arginine RT 20 EtOH 12 14
4 g-C3N4@L-arginine 40 20 EtOH 53 48
5 g-C3N4@L-arginine 80 20 EtOH 92 91
6 g-C3N4@L-arginine 80 30 EtOH 90 87
7 g-C3N4@L-arginine 80 20 Water 65 68
8 g-C3N4@L-arginine 80 20 MeOH 86 73
9 g-C3N4@L-arginine 80 20 Acetonitrile 65 61
10 g-C3N4 80 30 EtOH Trace Trace
11 L-arginine 80 30 EtOH 32 30

Table 2. Synthesis acridinedione derivatives by g-C3N4@L-arginine (a,b).
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(a) Reaction conditions: aromatic aldehyde (1 mmol), hydrazine hydrate (1 mmol), ethyl acetoacetate 
(1 mmol), malononitrile (1 mmol) catalyst (20 mg), and ethanol (5 mL) refluxed in 80 °C. (b) Yields 
referred to pure products. 

3.2. Mechanism of Using Nanocatalyst for Synthesizing Pyranopyrazole and Acridinedione 
Derivatives 
3.2.1. Pyranopyrazoles 

The study of the mechanism for pyranopyrazole derivatives and the proposed mech-
anism is shown in Scheme 2. In addition, g-C3N4@L-arginine is needed for activating dif-
ferent intermediates and reactants. Malononitrile (I) and aromatic aldehyde (II) would re-
act with each other by the carbon as a nucleophile. Then, it would reacts with the carbonyl 
group by releasing water and produce intermediate (III). Simultaneously, ethyl acetoace-
tate (IV) and hydrazine hydrate (V) react with each other and form the intermediate (VI). 
Afterward, the amine group’s non-bonding electron pair reacts with the ethyl acetoace-
tate’s carbonyl group. In the following step, the 5-member ring was closed by removing 
the water molecule. In the last step, two produced intermediates, ((III) and (VI)), would 
react with each other, and the pryranopyrazole derivative was synthesized. 
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(a) Reaction conditions: aromatic aldehyde (1 mmol), hydrazine hydrate (1 mmol), ethyl acetoacetate (1 mmol),
malononitrile (1 mmol) catalyst (20 mg), and ethanol (5 mL) refluxed in 80 ◦C. (b) Yields referred to pure products.

3.2. Mechanism of Using Nanocatalyst for Synthesizing Pyranopyrazole and
Acridinedione Derivatives
3.2.1. Pyranopyrazoles

The study of the mechanism for pyranopyrazole derivatives and the proposed mech-
anism is shown in Scheme 2. In addition, g-C3N4@L-arginine is needed for activating
different intermediates and reactants. Malononitrile (I) and aromatic aldehyde (II) would
react with each other by the carbon as a nucleophile. Then, it would reacts with the carbonyl
group by releasing water and produce intermediate (III). Simultaneously, ethyl acetoacetate
(IV) and hydrazine hydrate (V) react with each other and form the intermediate (VI). Af-
terward, the amine group’s non-bonding electron pair reacts with the ethyl acetoacetate’s
carbonyl group. In the following step, the 5-member ring was closed by removing the
water molecule. In the last step, two produced intermediates, ((III) and (VI)), would react
with each other, and the pryranopyrazole derivative was synthesized.
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3.2.2. Acridinediones

The study of the mechanism for acridinedione derivative synthesis and the proposed
mechanism is exhibited in Scheme 3. For activating the carbonyl group of aldehydes,
the presence of g-C3N4 @L-arginine is essential. After activating the carbonyl group with
nanocatalyst (I) and producing the hydroxyl group on dimedone (II), the carbon nucleophile
would react with activated aromatic aldehyde. Then, the other dimedone reacts with the
double bond for donating electrons (III), and after a water molecule removal, the ring is
closed by an intramolecular reaction (IV, V and VI). Eventually, the intended product is
obtained (VII).

3.3. Reusability

The recovery and recyclability of the catalyst are the essential principles of green
chemistry. Therefore, the reusability of g-C3N4@L-arginine was studied for synthesizing
pyranopyrazole and acridinedione derivatives. G-C3N4@L-arginine was extracted from the
reaction, washed with water and ethanol, then dried at 70 ◦C. It was repeated 5 times in the
same conditions. After each reaction, the yield decreased gradually, but it was acceptable
(Figure 6).
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4. Conclusions

In conclusion, in this project, we utilized an easy and convenient method for prepar-
ing g-C3N4@L-arginine nanocatalyst and applied it for producing pyranopyrazole and
acridinedione derivatives. G-C3N4@L-arginine nanocatalyst has remarkable advantages
such as reusability, easy separation, high efficiency, and short reaction time. According to
the results, produced nanocatalyst is the superior compared to other reported catalysts.
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