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Abstract: This work summarizes the results of a new approach to the synthesis of previously
undescribed, hard-to-obtain five-membered cyclic organophosphorus compounds: 3-alkyl(aryl)-
substituted phospholanes, α,ω-bisphospholanes, polycyclic phospholanes, 4,5-dialkyl(diaryl)- dis-
ubstituted 2,3-dihydrophospholes, as well as their oxides and sulfides. Alumoles and alumolanes
synthesized by the reaction of cycloalumination of available unsaturated compounds (terminal
alkenes, α,ω-alkadienes, norbornene derivatives, symmetrical internal alkynes) with Et3Al in the
presence of a Cp2ZrCl2 catalyst were used as precursors. The substitution of aluminum atoms in
cyclic organoaluminum compounds for phosphorus atoms takes place using alkyl(aryl)phosphorus
(III) dichlorides. The developed one-pot method gives high yields of products under mild conditions.

Keywords: phospholanes; phospholes; alumolane; alumole; cycloalumination; zirconocene dichlo-
ride; metal complex catalysis

1. Introduction

Phosphorus-containing heterocycles, due to their unique properties, are widely used as
intermediates, ligands for organometallic chemistry and catalysis, monomers for electronics,
and effective drugs for medicine and agriculture [1–6]. Therefore, the development of
original methods for obtaining hard-to-obtain and previously undescribed five-membered
organophosphorus compounds (OPCs) is a highly demanded, relevant task and is of great
practical importance.

A number of fairly effective approaches to the synthesis of cyclic OPCs include meth-
ods based on the direct conversion of five-membered metallacarbocycles based on tran-
sition metals into phosphocarbocycles using phosphorus dihalides. A few examples of
the synthesis of phospholenes and phospholes from zirconacyclopentenes [7,8], zircona-
cyclopentadienes [9–11], and titanocyclopentadienes [12] are known in the literature. The
direct conversion of aluminacarbocycles into cyclic OPCs has not been practically studied.
We assumed that the replacement of the aluminum atom in aluminacarbocycles by a phos-
phorus atom using organic phosphorus dihalides would allow us to develop promising
methods for practical application to obtain a wide range of previously inaccessible and
new classes of cyclic and acyclic organophosphorus compounds of a given structure.

2. Results and Discussion

Presently, we have developed effective one-pot methods for the synthesis of phos-
pholanes and phospholes of various structures, based on the reaction of catalytic cycloa-
lumination of unsaturated compounds (alkenes, alkynes, α,ω-diolefins, norbornenes)
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through the formation of alumoles (aluminacyclopentadienes) and alumolanes (alumi-
nacyclopentanes). The alumoles and alumolanes obtained in situ were involved in the
substitution of aluminum atoms in substituted alumolanes for phosphorus atoms with
alkyl(aryl)phosphorus dichlorides.

In 2012, 3-substituted phospholanes were obtained [13,14]. It was found that alu-
minocyclopentanes 1 obtained by the reaction of alkenes with Et3Al in the presence of 5
mol. % Cp2ZrCl2 (20 ◦C, 6–8 h), reacted in situ with R’PCl2 (R’ = Me, Bu, Ph) in toluene
for 30 min, with the replacement of the Al atom by the P atom to form the corresponding
phospholanes 2 in yields 79–84% (Scheme 1). Compounds 2 are mixtures of diastereomers
3:2, formed due to the presence of two centers of asymmetry in the molecule at C-3 and
P-1. The latter exists due to the high configuration inversion barrier at the phosphorus
atom [15].
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Scheme 1. Synthesis of 3-substituted phospholanes 2.

Phospholanes 2 easily react with H2O2 in chloroform due to the presence of a lone
electron pair in phosphorus with quantitative yields of phospholane 1-oxides 3. The reaction
of 2 with S8 leads to phospholane-1-sulfides 4 also in quantitative yields (Scheme 2).
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In the reaction of styrene or 2-vinylnaphthalene with AlEt3 in the presence of Cp2ZrCl2,
in addition to 3-phenyl(naphthyl)-1-ethylaluminumcyclopentanes 5, the reaction mixture
contains 2-phenyl(naphthyl)-1-ethylaluminumcyclopentane 6 [14]. Both regioisomers re-
act in situ with phosphorus dihalides and hydrogen peroxide to form 1-phenyl(alkyl)-3-
arylphospholane oxides 7 and 1-phenyl(alkyl)-2-arylphospholane oxides 8 in a 1:2 ratio
with a total yield of 87% (Scheme 3).
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Next, we thought it expedient to apply our method to obtain α,ω-bisphospholane
compounds by the interaction of phosphorus dihalides with bisaluminacyclopentanes. It
was established that, under the developed conditions, bisaluminacyclopentanes 9, obtained
by the catalytic cycloalumination of 1,5-hexadiene, 1,7-octadiene, and 1,9-decadiene, react
with phosphorus dihalides to form bisphospholanes 10 as a mixture of isomers with a total
yield of 84–85% (Scheme 4) [14].
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Scheme 4. Synthesis of bisphospholanes 10.

The reaction of substitution of the Al atom for the P atom in 4,5-disubstituted 2,3-
dihydroalumoles was studied for the first time [16]. It was established that 4,5-disubstituted
2,3-dihydroalumoles 11, synthesized by the catalytic cycloaluminization of symmetrical
acetylenes with AlEt3 under the action of a Cp2ZrCl2 catalyst, enter into the reaction of sub-
stitution of an aluminum atom for a phosphorus atom with phenyl- and alkyldichlorophos-
phines (~20 ◦C, 30 min) with the formation of 4,5-disubstituted 2,3-dihydrophospholes 12
in 84–92% yields (Scheme 5).
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The interaction of in situ generated bicyclic organoaluminum compound 13 with PhPCl2
yielded phospholene 14 with an annelated cyclic fragment in 81% yield (Scheme 6) [16]. Deriva-
tization of bicyclic phospholene 14 gave rise to 2,3-dihydrophosphol-1-oxide 15a and
2,3-dihydrophosphol-1-sulfide 15b in quantitative yields.
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An efficient one-pot method was developed for the synthesis of polycyclic phospho-
lane oxides 18, 20, 22, and 24 by the in situ reaction of dichlorophosphines with norbornane-
annelated aluminacyclopentanes obtained by the catalytic cycloalumination of norbornenes
in 81–92% yields (Schemes 7 and 8) [17].



Chem. Proc. 2022, 12, 47 4 of 5

Chem. Proc. 2022, 12, x  4 of 6 
 

 

 
Scheme 6. Synthesis of 13-phenyl-13-phosphabicyclo[10.3.0]pentadec-1(12)-ene 14. 

An efficient one-pot method was developed for the synthesis of polycyclic phos-
pholane oxides 18, 20, 22, and 24 by the in situ reaction of dichlorophosphines with 
norbornane-annelated aluminacyclopentanes obtained by the catalytic cycloalumination 
of norbornenes in 81–92% yields (Schemes 7 and 8) [17]. 

 
Scheme 7. Synthesis of the 3-Phenyl-3-phosphatricyclo[5.2.1.02,6]decane 3-Oxide. 

It was found that compounds with a bulkier hydrocarbon framework, such as 19 
and 21, predominantly form syn-phenyl-substituted phospholane 3-oxides 20а and 22а; 
the proportion of anti-isomers in these experiments does not exceed 15% and 10%, re-
spectively. In the case of 23, the formation of a single syn-isomer 24 is observed (Scheme 
8). Thus, the ratio of polycyclic syn- and anti-3-phenyl-phospholane 3-oxides depends on 
the structure of the polycyclic hydrocarbon substituent annelated to aluminacyclopen-
tane. 

Scheme 7. Synthesis of the 3-Phenyl-3-phosphatricyclo[5.2.1.02,6]decane 3-Oxide.

It was found that compounds with a bulkier hydrocarbon framework, such as 19 and
21, predominantly form syn-phenyl-substituted phospholane 3-oxides 20a and 22a; the
proportion of anti-isomers in these experiments does not exceed 15% and 10%, respectively.
In the case of 23, the formation of a single syn-isomer 24 is observed (Scheme 8). Thus, the
ratio of polycyclic syn- and anti-3-phenyl-phospholane 3-oxides depends on the structure
of the polycyclic hydrocarbon substituent annelated to aluminacyclopentane.
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and alumols—is an effective tool for designing cyclic organophosphorus compounds in
one preparative step.
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