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Abstract: The reaction between a cholro-bridged dinuclear compound (a, b) and a diphosphine
(dppm) ligand in a molar ratio of 1:2 yielded a mononuclear compound [{Pd[R-C¢H3C(H)=NCy]
{PhyPCH,PPhy-P,P}][PF4] {R = 3-CHO (1a), 4-CHO (1b)}. The compounds were characterized using
IR, 'H, and 3'P-{'H} NMR spectroscopy, and compound 1b was identified using X-ray diffraction.
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1. Introduction

One of the classic ways to activate C—H bonds in hetero-substituted organic com-
pounds is through the cyclometallation reaction, which is a well-known procedure [1]. The
first cyclometallated compounds were discovered in the mid—1960s [2], and since then, this
reaction has received a lot of attention because of the many applications of metallacycles,
such as organic synthesis, catalysis, metallomesogen design, asymmetric synthesis, racemic
ligand resolution, C-H bond activation, the synthesis and reactivity of organometallic com-
pounds with biologically active ligands, and medical chemistry. In recent years, phosphine
ligands have received a lot of attention [3-5], such as bis[diphenylphosphino]methane
(dppm) ligands, which are widely employed in transition metal chemistry as chelating
and bridging coordination modes ligands [6]. However, in square planar metal com-
plexes with a d® configuration, the tendency for chelation of diphosphine ligands is very
strong [7-9], hence several mononuclear dppm-type compounds have shown interest in
homogeneous catalysis [10-13]. These bidentate diphosphine ligands are useful in metal-
catalyzed processes. Over the last 30 years, metal—catalyzed cross-coupling reactions have
grown in prominence, particularly as convenient procedures for forming C-C bonds [14,15].
Palladium-catalyzed reactions have piqued curiosity [16,17]. The Suzuki-Miyaura reaction,
which is catalyzed by palladium, is one of the most important ways for the formation of C-
C bonds under very mild experimental conditions and is particularly useful for the creation
of biaryls [18]. In the Suzuki cross-coupling reaction, both nitrogen-based ligands (amines
or imines) and bulky phosphines (phosphorus ylides) have been successfully described
(Figure 1) [19]. New catalysts are needed for current technologies that are low-cost, easily
available, moisture- and air-stable, and most critically, extremely effective at low catalyst
loading [20,21].
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Figure 1. Palladacycle catalysts in activity [20-22].

2. Result and Discussion

The mononuclear compounds were obtained by treating the halide-bridged dinu-
clear compound a and b with bis(diphenylphosphino)methane (dppm) in the existence of
NH4PFg in a 1:2 molar ratio (Scheme 1). The IR spectra revealed a shift in the C=N stretch’s
direction. Compared to the free Schiff base, the lower wavenumber nitrogen coordination
of the C=N ligand group in the 'H NMR spectra, the HC=O resonance shows a singlet
signal at 6 9.87 for 1a and 6 9.53 for 1b, and the HC=N resonance appears as a doublet
ca. 5 8.43 by connecting to only the 3'P nucleus trans to nitrogen for both compounds.
The proton H5, coupled to both phosphorus nuclei, was assigned a doublet at  6.90 for
1la [*J(H5P) = 7.9 Hz]and & 6.80 for 1b [*/(H5P) = 6.4 Hz]. In the 3'P-{'H} NMR spectra,
two doublets were seen for the two non-equivalent phosphoruses. The doublets were
assigned based on the idea that a ligand with more trans influence causes the resonance of
the phosphorus atoms trans to it to shift to a lower frequency [22].
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Scheme 1. dppm, acetone, r.t.

The crystal structure of 1b (Figure 2) includes a mononuclear molecule and a hexaflu-
orophosphate anion. A (N1) from the imine group, (C1) an ortho carbon atom from the
phenyl ring, and (P1,P2) two phosphorus atoms from a chelating dppm form the coordi-
nation sphere surrounding the palladium atom. At a palladium, the sums of angles are
nearly 360°, with the distortions being more visible at the slightly reduced “bite” angles
C1-Pd1-N1 [81.02]°, resulting from chelation. The bond angles P(1)-Pd(1)-P(2) are forced
to 70.15 by the demands of the four-membered chelate ring of phosphine. The Pd1-N1
bond length is 2.097 A, and the Pd1-C1 bond length is 2.025 A. The Pd-P distance trans
to carbon, Pd(1)-P(2), and trans to nitrogen, Pd(1)-P(1), [2.463(13) A versus 2.248(11) A]
clearly indicate the contrasting influence of the phenyl carbon and imine nitrogen atoms
(Table 1).

The hydrogen bonding between the adjacent molecules in the C8:--H18—C18,,,; and
O1---H—C intermolecular contact causes weak interactions, as shown in Figure 3. Weak
C8---H24; 2.874 A, C8—C24; 3.191 A, O1---H27a; 2.298 A and O1---H29; 2.658 A (Table 2)
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connect the crystal structure 1b, resulting in a bifurcated hydrogen bond that extends along
the crystallographic direction. Symmetry code#1/2 +x,1.5 —y, —1/2 + z.

Figure 2. Crystal structure of compound 1b. Solvent molecules and hydrogen atoms have been
omitted for clarity.

Table 1. Bond lengths are given in [A] and angles in [o] of 1b.

Pd(1)-N(1) 2.097(4) C(1)-Pd(1)-N(1) 81.02(16)
Pd(1)-C(1) 2.025(4) P(1)-Pd(1)-N(1) 175.10(10)
Pd(1)-P(1) 2.248(11) N(1)-Pd(1)-P(2) 109.25(11)
Pd(1)-P(2) 2.463(13) P(1)-Pd(1)-C(1) 98.97(12)
P(1)-Pd(1)-P(2) 70.15(4) C(1)-Pd(1)-P(2) 167.36(12)

Figure 3. The packing view in complex 1b shows intermolecular interaction (C—H---Cyy1) and
(C—H---O) the PFg ions have been omitted for clarity.
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Table 2. C-H:-Cyy) interactions [A, °] of 1b.

C—H--Cyy C—H H-+Cypyl C—Cami <(C—H:+-Cypy1)’
C8—H24—C24 2.874 0.95 3.191 100.78
C—H...01 C-H H---0 c-0 <(C—H---0)°
C27—H27a—01 0.99 2.298 3.337 128.91
C29—H29-01 0.95 2.658 3.288 178.46

Table S1 shows Crystal data and structure refinement for 1b.

3. Experimental Part

The synthesis of [Pd{3-(COH)C¢H3;C(H)=NCy}(u-Cl)], (a) and [Pd{4-(COH)
CeH3C(H)=NCy}(pu-Cl)], (b) were reported previously by our group [23].

Preparation of [Pd{R-CsH3C(H)=NCyl{PPh,CH,PPh,}[PFs] {R= 3-CHO, 4-CHO}. (1a, 1b)

To a solution of a or b (50 mg, 0.070 mmol), dppm (53.8 mg, 0.0140 mmol), in acetone
15 mL was added. The mixture was mixed at room temperature for 2 h, following which
ammonium hexafluorophosphate (23 mg, 0.0140 mmol) was added, the solution was stirred
for another 1 h, water ca. 20 mL was added dropwise, and the mixture was stirred for
another 2 h. A precipitate was produced, which was then filtered, washed with water, and
dried in vacuo. The required compound was recrystallized as pale-yellow microcrystals
in CH,Cl, /n-hexane. 1a: Yield 73 %, IR = 1693 cm ™! (C=0), 1617 cm~! (C=N), 'H NMR
(400 MHz, CDCl3) § 9.87 (s, 1H, HC=0), 8.42 (d, %] = 6.9 Hz, 1H, Hi), 7.95 (s, 1H, H2),
7.75-7.37 (m, 20H, PPhy), 6.90 (d, 4] = 8.0 Hz, 1H, H5), 4.30 (t, 2] = 9.8 Hz, 2H, CH), 3.37
(m, 1H, N-CH-Cy), 0.6 5-2.0 (m, 20H, Cy) (Figure S1). 3'P NMR (CDCl3, 162 MHz)—4.8 (d,
J =639 Hz), —28.2 (d, ] = 63.9 Hz), —141.7 (h, PF;) (Figure S2).

1b: Yield 82 %, IR = 1692 cm~! (C=0), 1624 cm~! (C=N), 'H NMR (400 MHz, CDCl3)
§ 9.53 (s, 1H, HC=0), 8.43 (d, 4] = 7.3 Hz, 1H, Hi), 7.86 -7.32 (m, 20H, PPhy), 7.11 (t,
3] =8.4Hz, 1H, H3), 6.80 (d, 4] = 6.4 Hz, 1H, H5), 4.30 (dd, %] = 11.3, 8.2 Hz, 2H, CH,), 3.38
(m, 1H, N-CH-Cy), 0.6-2.30 (m, 20H, Cy) (Figure S1). 3'P NMR (CDCls, 162 MHz)-4.8 (d,
J=64.5Hz), —28.2 (d, ] = 64.5 Hz), —141.5 (h, PFy).

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/ecsoc-26-13563/s1. Figure S1: 'H NMR of compounds 1a and 1b
in CDCl3; Figure S2: 31p (IH}JNMR of compound la in CDCl3; Table S1: Crystal data and structure
refinement for 1b.
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