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Abstract: This communication reports the synthesis of a series of bis (1,4-disubstituted-1,2,3-triazoles)
starting from the known (2,3,4,5) bis acetonide-protected diethyl galactarate (1). Reduction of 1
with LiAlH4 led to dioxolane 2 (90%), which, upon treatment with CBr4, gave the corresponding
dibromide 3 (80%). The reaction of 3 with NaN3 in DMF afforded the key diazide 4 (95%). From
the diazide 4 were obtained the bis (1,4-disubstituted-1,2,3 triazoles) 5–8 via click reactions with
alkyl-substituted acetylenes, including triphenyltinacetylene. The physical characteristics of the new
compounds, including selected values of 1H, 13C, and 119Sn NMR data, are given.

Keywords: bis (1,4-disubstituted-1,2,3-triazoles); triphenyltin substituents; galactaric framework;
physical properties

1. Introduction

As reported in many publications, 1,2,3-triazoles have found wide application in
diverse areas of agriculture and medicine. The vast existing literature demonstrates the
antifungal, anticonvulsant, antiviral, antibacterial, antimalarial and antidiabetic proper-
ties of these compounds [1]. Natural products, such as galactose, glucose, fructose, and
manose, are useful and cheap raw materials available at an industrial scale. This makes
these renewable multifunctional compounds useful for the synthesis of organic ligands,
catalysts, and chiral molecules of industrial interest. Our group has been engaged for some
time on the synthesis of functionally substituted organotin derivatives and the study of
their physical and chemical properties [2–4]. In relation to the preceding discussion, we
considered it of interest to carry out the synthesis of new organotin derivatives containing
1,2,3-triazole substituents to study their physical and chemical properties. We also con-
sidered the possibility of using click chemistry to prepare 1,2,3-triazoles via cycloaddition
reactions between the appropriate alkynes and azides [5,6]. In the present communication,
we report the results obtained in the first part of our project.

2. Results and Discussion

The synthesis of compounds with galactaric framework 2–6 was carried out according
to Scheme 1. The reaction of diethyl galactarate with acetone anh. in the presence of
triethylboron etherate led to (2,3,4,5) bis-acetonide-protected diethyl galactarate (1) in 61%
yield. The reduction of 1 with LiAlH4 led to ((4S,4′R,5R,5′S)-2,2,2′,2′-tetramethyl-[4,4′-
bi(1,3-dioxolane)]-5,5′-diyl)dimethanoldiol (2) in 90% yield. Compounds 1–3 have already
been reported [7]. Diol 2 by reaction with CBr4 and PPh3 in CH2Cl2., gave (4R,4′S,5S,5′R)-
bis(bromomethyl)-2,2,2′,2′-tetramethyl-4,4′-bi(1,3-dioxolane) (3) in 80% yield. Compound 3
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is a white solid of mp 120–122 ◦C. The reaction of dibromide 3 with NaN3 in DMF at 80 ◦C af-
forded (4S,4′R,5R,5′S)-5,5′-bis(azidomethyl)-2,2,2′,2′-tetramethyl-4,4′-bi(1,3-dioxolane) (4).
Diazide 4, a white solid compound, mp 70–71 ◦C, was obtained in 95% yield, and was the
key compound for the synthesis of the target compounds, i.e., the bis (1,4-disubstituted-1,2,3
triazoles). The reduction of 4 with LiAlH4 led to ((4 ((4S,4′R,5R,5′S)-2,2,2′,2′-tetramethyl-
[4,4′-bi(1,3-dioxolane)]-5,5′-diyl) dimethanamine (5), a white solid, mp 64–67 ◦C, in 65%
yield. The 1H NMR characteristics of compounds 3–5 are included in Table 1.
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most powerful methods for the preparation, in excellent yields, of a wide range of tria-
zoles, including 1,4-disubstituted 1,2,3-triazole [5–7]. In order to obtain molecules with 
two triazo substituents, we considered it of interest to explore the use of click reactions 
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triazoles) using diazide 4 as a starting material. The reactions were carried out by prepar-
ing a suspension of 4 (0.48 mmol) and the terminal alkyne (0.97 mmol) in a 1:1 mixture of 
t-butanol/water (2 mL). To the suspension was added sodium ascorbate (0.05 mL of an 
aqueous 1 M solution) and then CuSO4.5H2O (0.012 g, 0.050 mmol). The reaction was left 
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1,3-Dipolar cycloaddition, usually referred to as Huisgen cycloaddition, is one of the
most powerful methods for the preparation, in excellent yields, of a wide range of triazoles,
including 1,4-disubstituted 1,2,3-triazole [5–7]. In order to obtain molecules with two triazo
substituents, we considered it of interest to explore the use of click reactions [8].

In this communication, we inform the synthesis of some bis (1,4-disubstituted 1,2,3-
triazoles) using diazide 4 as a starting material. The reactions were carried out by preparing
a suspension of 4 (0.48 mmol) and the terminal alkyne (0.97 mmol) in a 1:1 mixture of
t-butanol/water (2 mL). To the suspension was added sodium ascorbate (0.05 mL of an
aqueous 1 M solution) and then CuSO4.5H2O (0.012 g, 0.050 mmol). The reaction was left
overnight with stirring at RT. Then the mixture was cooled to 0 ◦C and water (0.50 mL)
was added. The formation of a precipitate was observed, which was filtered giving the
desired products in all cases with almost quantitative yields. In Scheme 2, the synthesis
of bis (1,4-disubstituted 1,2,3-triazole) 6–8 and 10 is shown. For the synthesis of organ-
otin derivative 10, using the combination sodium ascorbate/CuSO4 in water, no reaction
was observed. However, the reaction using CuI and Et3N in THF and under reflux gave
1,1′-(4R,4′S,5S,5′R)-2,2,2′,2′-tetramethyl-[4,4′-bi(1,3-dioxolane)]-5,5′-diyl)bis(methyle)bis [4-



Chem. Proc. 2022, 12, 22 3 of 4

(triphenylstannyl)methyl)-1H-1,2,3-triazol] (10), which was purified by column chromatg-
raphy. Compound 6 is not soluble in common NMR solvents and was identified by
HRMS-ESI.
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The triphenylpropargyltin (9) needed to prepare the bis (1,4-disubstituted 1,2,3-triazole)
10 was obtained from the reaction between propargyl bromide and triphenyltin chloride,
carried out in ether in the presence of Mg and catalytic amounts of HgCl2 (Scheme 2). The
13C NMR characteristics of compounds 7 and 8 are summarized in Table 2. The 13C, 1H
and 119Sn NMR characteristics of compound 10 are listed in Table 3.
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The compounds bis (1,4-disubstituted 1,2,3-triazole) 6–8 and 10 are all solids and were
obtained in almost quantitative yields, except for compound 10 (70%). Compound 6 is a
yellow solid, m.p. 275–278 ◦C; 7 is a pale green compound, m.p. 126–128 ◦C; 8 is a yellow
solid, m.p. 160–162 ◦C; and 10 is a white amorphous product, m.p. 168–170 ◦C.
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