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Abstract: Urban agriculture is receiving increased attention not only for food security and public
health but for mitigating the impacts of urbanization and climate change. In cities, rooftop urban
farms provide a solution for the limited space at the ground level. However, rooftop urban farming
poses several challenges, including an increased need for workforce and site visits and a demand for
efficient water use. Recent advancements in information and communication technology (ICT) and
the Internet of Things (IoT) have enabled a tremendous suite of low-cost, wireless sensor nodes. In
this work, an IoT-enabled approach is introduced to improve water management in an urban rooftop
farm in downtown Toronto, Canada. Low-cost resistive water level sensors were calibrated and
integrated into wireless sensor nodes to send data through LoRaWAN, an IoT protocol, to The Things
Network (TTN) console, after which the processed data are visualized in the user dashboard. This
paper addresses the main design stages, field deployment, and suggestions for maintenance learned
through monitoring the growing season of 2021. The combination of low-cost sensors, user-friendly
microcontrollers and open-source platforms provides an opportunity to improve decision-making,
lower costs and reduce reliance on labor.

Keywords: urban agriculture; rooftop farming; water management; internet of things; smart sensors

1. Introduction

Urban agriculture (UA) has become increasingly popular across cities in various sys-
tems such as individual plots on public and private lands, community gardens and building
rooftops [1]. Rooftop urban farms provide a solution for limited space at the ground level in
cities. However, they pose several challenges, including an increased need for a workforce
and a demand for efficient water use. Over the last decade, advancements in information
and communication technology (ICT) and developments in the Internet of Things (IoT)
have improved sensors’ potential to monitor, transmit and manage environment-related
metrics [2,3]. IoT-enabled solutions in farming and agriculture applications can reduce
the workforce and the need for human interaction, reducing overall operational costs.
Furthermore, using the IoT on agricultural green infrastructure provides an opportunity to
improve the general understanding of how these complex systems function, which results
in better design/planning strategy and operation and, therefore, improved performance.

Several studies have investigated the potential of IoT for crop production, including
works that used temperature and soil moisture as indicating parameters [4,5]. When
used in agricultural applications, some researchers found evidence that IoT helps in soil
management and nutrient detection [6]. Others considered IoT to transform farming
into a smart process by monitoring health diseases and sending alarm notifications to
farmers [7,8]. Some studies have turned their attention to adaptive irrigation systems to
conserve water, time and energy [9].
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Many cities are becoming water-stressed and are also experiencing challenges with
urban drainage systems. Careful water use and managed stormwater have become im-
perative in achieving sustainability goals through urban farming. Water management in
farms requires an understanding of drainage patterns, which can be monitored through
sensors. A recent line of IoT-related research has focused on developing low-cost sensors to
measure water levels in rivers using various approaches such as ultrasonic sensors [10,11].
However, ultrasonic sensors are limited to higher distances and are inapplicable in small
drains. Moreover, most IoT literature records have dominantly used Wi-Fi and mobile
technology as protocols. Fewer studies have used LoRaWAN, a communication technology
known for its highly low-power requirements and long-range coverage.

This work proposes an IoT-enabled, wireless sensor node composed of low-cost, off-
the-shelf water level sensors and microcontrollers that monitor and sends real-time data
through LoRaWAN to the internet. The paper is divided into several sections to address
the design stages, field deployment and suggestions for maintenance.

2. Materials and Methods
2.1. Description of Study Site: Urban Farm Living Lab

The Urban Farm Living Lab (UFLL) is located on the rooftop of George Vari Engi-
neering and Computing Centre at the campus of Ryerson University (renaming in process)
in downtown Toronto, Canada. Initially, it was an intensive green roof built in 2004 and
converted to a farm in 2014. The Urban Farm grows roughly 3500 to 4500 kg of produce
annually. The farm is split into different plots, A, B, C, D, E and AA, with three drains
implemented across the plots (Figure 1).
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2.2. IoT System Architecture

The proposed IoT system is based on LoRaWAN technology. It consists of a
microcontroller-based LoRa generic node and a water level sensor combined in a ‘sensor
node’ placed to acquire real-time values. The monitored information is transmitted in
data packets through a nearby gateway to The Things Network (TTN). TTN is an open
platform that acts as a network layer by receiving and rerouting the data from sensor
nodes to the cloud. The cloud server, which can be accessed through desktop and mobile
applications, allows users to store the water level data and visualize it in various forms to
obtain information on the volume, rate and timing of drained water. Figure 2 depicts the
IoT system architecture.
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Figure 2. Block diagram of the proposed system.

2.2.1. Hardware Setup and Physical Circuit

The water level sensor is commercially known as the eTape liquid level sensor (USD 49)
and works by providing a corresponding resistance value inversely proportional to the
liquid level (Milone Technologies, Sewell, NJ, United States). The used LoRa sensor node is
commercially known as LSN50 (USD 43), powered by a 4000-mA battery and designed to
provide secure data transmission of sensors’ data (LSN50, Dragino, Shenzhen, China). The
sensor was connected to the node through a voltage-divider circuit, as shown in Figure 3.
The circuit utilized two pins on the eTape; pins 2 and 3 connected to VDD and GND of the
LSN50, respectively. To create a voltage divider between the components, a resistor with a
range of 0–2000 ohms was attached between pin 3 and GND. The exact value of the resistor
is not prescribed, as the calibration (discussed in the next section) is performed based on
the used resistor. Additionally, pin 3 of the eTape was connected to PA0 of the LSN50 to
deliver the analog input information in volts.
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The LSN50 was registered to TTN using the Device EUI, Application EUI and App Key
provided by the manufacturer. This sensor node, similar to other LoRa devices, operates
over the air authentication (OTTA) when connected to TTN, meaning that the registration
keys cannot be compromised before activation. A LoRaWAN gateway installed previously
on campus was used to connect the sensors. Gateways are an essential intermediary
connection between sensors and TTN. This project’s gateway’s frequency was US-902-928,
specific for North America.

2.2.2. Payload Encoder and Sensor Calibration

Motivated by the need for low-code IoT implementation, many LoRa device manu-
facturers have started to grant open access to coding documentation and online decoders
requiring less user configuration. Data are exchanged over TTN through bytes which can
be decoded into a usable format. In this work, the LSN50 node has an open-access code
that was used in the TTN payload decoder after it was slightly modified to read the data
from the used water level sensors.

Once device registration and activation on TTN were complete, the data were decoded
into the specified payload format and stored temporarily on the platform before migrating
to the cloud. The initial decoded data were used to calibrate the water level sensors at this
stage. The sensor sends analog input voltage, which needs to be converted into a water
level value. The calibration started at a reference level equal to zero (i.e., in the absence of



Chem. Proc. 2022, 10, 34 4 of 7

water), then water was gradually added to 2.5, 5, 7.5, 10 and 12.5 cm. The sensor was given
sufficient time to report numerous readings at each water level, and an average reading
was then recorded. This protocol was followed to minimize the sensor noise and ensure
accuracy. The water levels were then plotted against their corresponding voltage values,
as shown in Figure 4, and the equation was used in the payload decoder to complete the
calibration process.
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2.3. Field Deployment

As previously mentioned, the farm had three outlets to drain water. Each of these
drains was equipped with a developed water level sensor node. The eTape was fitted in a
polycarbonate protective tube, and a housing cap covered its pins. The wires between the
eTape and LSN50 were shielded, and the node itself was mounted on a custom-made pole
to ensure that the antenna was unobstructed, as shown in Figure 5.
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2.4. Interactive Platform and Cloud Storage

Many open IoT development platforms have recently been used to visualize and store
monitored data. Ubidots was used as a visualization platform and storage cloud in this
case study. The platform also allows users to create conditional events and data-based
alerts. Since the eTape does not come with LSN50 by default and it had been configured
to suit the goal of this project, alerts were made to notify users through SMS messages
whenever the sensor is off or its battery drops below a certain level.

3. Results and Discussion
3.1. Data Analysis of Rainfall Events

The sensor nodes were deployed during the growing season of 2021 between June
to December on a monitoring frequency of 5 min. A sensor was fixed to a v-notch weir
installed in each drain to allow flow estimation. The flow over the weir was determined
using the weir rating curve developed through laboratory analysis. Precipitation data
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from a weather station located on the roof were used to analyze the amount of rainwater
discharged by the farm.

Considering that this project’s scope is limited to developing low-cost wireless water
level sensor nodes using commercially available products, the gateway installed on campus
had an insignificant distance to the sensor nodes, meaning that the signal strength was
adequate, and data packet loss was not an issue. The developed sensor node provided con-
sistency and high-quality data over the season. However, to address the sensor noise, water
level data were smoothed to reduce dispersion and remove outliers using the exponential
smoothing (ES) method. Figure 6 shows an example of raw versus smoothed sensor data.
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3.2. Energy Consumption and Maintenance Activities

One essential element that makes LoRaWAN sensors feasible is their low power need.
Today, many of these sensors operate on replaceable batteries. Estimating the battery life is
a critical step in designing IoT development projects. However, an accurate prediction is
not always possible because battery life depends on other factors besides battery capacity
and system current. In wireless sensor nodes, the drained current significantly varies
during the ‘sleeping’ and ‘sampling’ modes.

Furthermore, the spreading factor (SF) is another variable that influences battery usage.
It is defined as the number of bits per chirp signal and is a function of modulation band-
width. Higher spreading factors result in longer transmission durations and consequently
shorter life. In this work, the initial assessment considering the LSN50 battery capacity
and eTape current revealed an approximate battery life of six months. However, batteries
needed to be replaced every two months. A possible reason for this discrepancy might
be that other factors such as sampling times and time on-air were not carefully analyzed.
These observations suggest the need for in-depth energy usage analysis and the selection
of optimal spreading factors.

The developed sensor nodes performed as expected throughout the monitoring period,
and other than battery replacements, they required no human interaction. Onsite calibration
checks were performed several times, and the accuracy was found to be maintained
without a need for recalibration. However, after several months of installation, some nodes
disconnected and became faulty. Upon investigation, the sensor pins were found to be
severely corroded. The problem could be avoided by isolating the pins with liquid electrical
tape. The faulty sensors were replaced, as shown in Figure 7.
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4. Conclusions

This study presented the design and deployment of a custom-built, IoT-enabled sen-
sor node to measure water level wirelessly through LoRaWAN at a rooftop farm using
off-the-shelf products. Over an entire growing season, the sensor node demonstrated a
reliable performance by providing real-time data of the runoff generated on the rooftop
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the need for further analysis of energy usage. As rooftop farms are becoming popular in
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toring is crucial to evaluate stormwater management and the monitoring of inflows and
outflows. Moreover, the IoT architecture presented in this work is scalable and extensible;
the used off-the-shelf components can be replaced and combined with other sensors and
microcontrollers to align with various agricultural goals, including water management,
nutrient detection and crop health.
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