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Abstract: In this study, berry samples were collected from healthy (control) and symptomatic vines
of the white varieties Viosinho and Malvasia-fina. Symptomatic vines showed two different degrees
of severity at harvest, namely chlorotic and scorched leaves (severity level 1) and tiger stripe leaves
(severity level 2). The total fatty acid content was reduced in both varieties and the total organic
acid content was unchanged. The total free sugar content increased with symptom progression
in Viosinho but remained unchanged in Malvasia-fina. Varietal differences were observed in the
response of amino acids, whose levels increased in Malvasia-fina and decreased in Viosinho.

Keywords: grapevine leaf stripe disease; Phaeomoniella chlamydospora; biosynthetic pathways; dis-
ease resistance and tolerance; Fomitiporia mediterranea; primary metabolism; disease susceptibility;
Phaeoacremonium minimum

1. Introduction

Several diseases directly affect the sensory quality of grapevine berries. Infection
on inflorescences, young berries and bunches by downy mildew are initially seen as oily
violet-brown areas; infected berries later shrivel and look like raisins [1]. Berry symptoms
of grapevine leaf roll associated virus complex (GLRaVs) include delayed maturity and
diminished yield [2]. With powdery mildew, infected berries often are misshapen or have
rusty spots on the surface. The entire berry may be covered with a white powdery growth
and severely affected fruit eventually crack and dry out [3].

With some other grapevine diseases, however, the effects the associated pathogens
have on the sensory quality of the berries are not clear. Examples are grapevine trunk
diseases (GTDs), a group of diseases that primarily affect grapes through pruning wounds,
subsequently colonizing the perennial organs causing vascular infections, internal necrotic
lesions, wood discolorations, brown wood streaking, white decays and cankers, and brown
stripes in the outer xylem [4–8]. Diseased vines may also show external foliar symptoms,
with their expression often discontinuous from one year to the next [9]. Associated with
foliar symptoms, berry symptoms may appear due to environmental and climatic changes.
With the GTD Botryosphaeria dieback, berry discolorations can be visually identified after
infections with Phomopsis viticola [6] and Neofusicoccum parvum [7].
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In the case of the GTD esca complex disease, the berries of infected vines usually
appear similar to those of healthy vines, although the spotting of berry skins (dark brown
or purple measles) and shriveling/withering of grape bunches have been reported [10].
Moreover, some berries might not fill properly and will fail to reach maturity, indicating
that the esca complex could cause delayed ripening [11]. In most cases, however, diseased
vines do not present any fruit symptoms at all for several growing seasons in succession,
making it difficult to assess the impact of GTDs on grape quality.

The effect of esca complex on berry quality has been the subject of some investigations
during the last decades [5,9–13] looking at sensory and chemical attributes. It was found
that berries from symptomatic vines were firmer and less elastic compared to berries
from healthy vines, indicating reduced ripening and a watery structure of the berries [5];
these berries also had high levels of nitrogen [11]. Esca complex moderately affected the
phenolic composition of berries by decreasing the skin concentrations of catechin and
epicatechin [12]. The authors found that a ‘25% of Esca-affected grapes’ threshold was
necessary before there was any adverse effects on chemical and phenolic composition
before maceration [12]. Thirteen proteins were shown to be influenced by esca complex
during the ripening process [13]. Gubler et al. [10], however, did not find a consistent
relationship between esca disease severity (lesion size) and total soluble solids in berries.

The lack of visual berry symptoms on esca-affected vines highlights the relevance of
further studies on how esca complex affects grape quality. The chemical analyses conducted
in this study aimed to identify amino acids, free sugars, organic acids, and fatty acids in
grape berries whose levels could be affected by the severity of foliar symptoms of esca
complex disease. Hence, relationships between severity of the disease and reductions in
grape quality were explored.

2. Materials and Methods
2.1. Collection of Berries

Grapes were collected from two white vine varieties grown in different plots in a
vineyard [14,15]: Viosinho and Malvasia-fina. The distance between the two plots was ca.,
100 m. Esca severity in the vineyard was monitored by visual inspection and three levels of
foliar symptom severity were delineated as healthy, moderate, and severe. Healthy vines
were those with no symptoms (S0; severity level 0). Vines with moderately affected leaves
were labelled S1 (severity level 1) and comprised of vines with mostly chlorotic, spotted,
and scorched leaves. Vines with mostly tiger stripe-like foliar symptoms were considered
severely affected and labelled S2. For each group of vines, 100 visually healthy berries were
harvested from the wings, tips, and centers of several bunches of three vines located in
different parts of the plots and used as replicates. The berries were immediately frozen at
−80 ◦C until lyophilized and pulverized into a powder for chemical analyses.

2.2. Chemical Analyses

Extraction and analysis of fatty acids was in accordance with the method described
by Goufo et al. [4] for grapevine leaves. The resulting FAMEs were analyzed with a gas
chromatograph equipped with a flame ionization detector and the amounts of unsaturated
(UFA), polyunsaturated (PUFA), monounsaturated (MUFA), saturated (SFA), and total
fatty acids (TFA) calculated and expressed in g mL−1. For the determination of total
(TAA), essential (EAA), and non-essential amino acids (NEAA), analytical conditions
were adapted from Goufo et al. [16]. Sugar analysis was based on a previously described
method [17]; the samples were analyzed with a high-performance liquid chromatography
system connected to photodiode array detector, and total sugars contents (TSS) calculated.
Organic acids of the berry powders were extracted according to a slight modification of a
previously described method [11].
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2.3. Statistical Analyses

All measurements were performed in triplicate. One-way analysis of variance and
Tukey’s honestly significant difference tests were performed to detect significant differences
among treatments regardless of variety. The confidence levels of all analyses were set at 95%
and values with p ≤ 0.05 were considered significant. Statistical analyses were conducted
using SPSS 16.0 and results expressed as means (bars in the figures) and standard deviations
(error bars in the figures).

3. Results and Discussion

In this study, a global chemical analysis of grape berries was conducted in order to
discriminate berries from healthy vines and berries from esca-affected vines with two
degrees of leaf necrosis (chloroses/scorches and tiger stripes).

A progressive decrease of TFA with increasing leaf symptom severity was observed for
both Viosinho and Malvasia-fina, which was mainly due to SFA (Figure 1). Indeed, a slight
SFA decrease was observed between healthy and moderately affected grapes, but there
was a sharp decrease between healthy and severely affected vines. Fatty acid data from
berries were not in line with leaf data previously obtained using Malvasia-fina; the previous
study found that levels of SFA (expressed in % FAME) increased in diseased leaves of
esca-affected vine [4], which is the opposite of the data obtained in this study for berries.
However, the data of the present study were expressed as g mL−1 grape sample. For both
cultivars, fairly similar results were obtained for UFA, with a strong increase in berries
from severely affected vines (Figure 1).
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Figure 1. Contents of fatty acids in berries of Viosinho and Malvasia-fina grapevine varieties healthy
(S0; severity level 0), moderately (S1; severity level 1), and severely (S2; severity level 2) affected by
esca complex disease. Error bars represent standard deviation over three replications. Comparing the
two varieties, value bars with different letters for each parameter are different (Turkey’s test, p ≤ 0.05).
SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty
acids, UFA = unsaturated fatty acids, TFA = total fatty acids.
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With regard to organic acids, no significant differences were observed between the
TOA in berries from healthy and esca-affected vines (Figure 2). The must of symptomatic
vines has been reported to have higher levels of malic and tartaric acids than the must of
healthy and asymptomatic vines [9]. In the same study [9], a strong reduction in sugar levels
of the must from symptomatic vines was found. In the present study, TSS levels remained
unchanged in the berries of Viosinho vines moderately affected but increased in berries of
vines severely affected by esca complex. For Malvasia-fina vines, no effect was observed
in relation to healthy vines, but berries from severely affected vines had higher TSS levels
than berries from moderately affected vines (Figure 2). A cultivar effect was observed for
the TAA parameter. Berries from Viosinho-affected vines had a 39.76–41.67% lower TAA
content than berries from healthy vines. In the case of Malvasia-fina, the opposite was
found, with a 33.04–123.34% increase. For both varieties, variations in EAA and NEAA
levels in the berries were correlated with esca symptom severity (Figure 2).
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Figure 2. Contents of total organic acids (TOA), total sugars (TSS), total amino acids (TAA), essential
amino acids (EAA), and non-essential amino acids (NEAA) in berries of Viosinho and Malvasia-fina
grapevine varieties healthy (S0; severity level 0), moderately (S1; severity level 1) and severely (S2;
severity level 2) affected by esca complex disease. Error bars represent standard deviation over three
replications. Comparing the two varieties, value bars with different letters for each parameter are
different (Turkey’s test, p ≤ 0.05).

4. Conclusions

A quality wine is dependent on grapes with optimum sensory and nutritional char-
acteristics. The data from the present study show a correlation between esca complex
leaf symptom severity and several chemical parameters of grape berries. Notably, amino
acids progressively increased in Malvasia-fina with leaf deterioration and decreased in
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Viosinho. A decrease in saturated fatty acids was observed, concomitantly with an in-
crease in unsaturated fatty acids. Changes in all fatty acids’ parameters were consistent
and similar between the grapevine varieties Viosinho and Malvasia-fina. There was no
correlation between the severity of the leaf symptoms and organic acids and sugars. TOA
remained unaffected in both varieties; TSS increased in Viosinho and remained unaffected
in Malvasia-fina. Strategies directed towards the reduction in foliar symptom expression
in vineyards might provide winegrowers with the tools to adapt to the constraints of esca
complex disease and produce table grapes and wines of high quality.
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