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Abstract: Regular consumption of dietary sugars can cause significant damage to the β-cells. Almost
a century after the discovery of insulin, it has been suggested that the frequent consumption of
certain carbohydrates can damage pancreatic β-cells, causing disturbances in the regulation of insulin
secretion. Most noncommunicable diseases, such as diabetes, obesity, and hypertension have a
common origin, metabolic dysfunction, which is partly due to β-cell malfunction. In this article, we
believed that sugars can lead to an imbalance in cellular metabolism, causing insulin exocytosis to
dangerously increase or decrease blood insulin concentrations. In this study, we describe the major
mechanism of insulin secretion and discuss the effects of sugar on pancreatic β-cells. Although many
environmental factors strongly influence β-cells, occidental diet, including excess sugar, has been
found to be the predominant factor that kills or disrupts the functioning of the unique cells that
produce, store, and secrete insulin.
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1. Introduction

The previous year marked 100 years since the discovery of insulin, a drug responsible
for saving and mitigating the sufferings of millions diagnosed with diabetes mellitus (DM).
DM is characterized by the dyshomeostasis of glucose metabolism, which leads to a chronic
increase in blood glucose levels, primarily due to insulin secretion dysfunction and/or
impaired insulin action in peripheral tissues [1,2]. Excessive consumption of added sugars,
mainly fructose and sucrose, is highly correlated with DM, which can lead to insulin
resistance, not only in adults [3] but also in children and young people [4].

The purpose of this opinion article is to highlight the current available literature on DM
and discuss the impact of dietary sugars on pancreatic β-cells and diabetes development.

2. Endocrine Pancreas

Insulin is a hormone capable of decreasing blood glucose levels. It is produced, stored,
and secreted by β-cells of the Langerhans islets in the pancreas. Each islet contains different
types of endocrine cells. Insulin-secreting β-cells are the most abundant cell type (~80%) in
the islets, followed by pancreatic α-cells (~15%) that secrete the hormone glucagon, and
pancreatic δ-cells (5%) that secrete somatostatin, along with a small number of PP cells
secreting pancreatic polypeptide. Endocrine cells account for <1% of the pancreatic tissue,
while the rest are composed of exocrine cells, which produce digestive juices containing
enzymes, such as proteases, lipases, and amylases; exocrine cells are responsible for degrad-
ing meal components, including carbohydrates, into the gut [5,6]. Functional pancreatic
endocrine development occurs during gestation and continues until infancy. Specifically,
β-cells can remodel or proliferate during the early postnatal period; however, the number
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of these cells remains constant for the rest of life. Thus, destruction or malfunction of β-cells
can lead to drastic metabolic dysfunction, causing DM [7].

3. β-Cells Burn Sugar to Provide Fuel to other Cells

Pancreatic β-cells can be considered metabolic sensors presenting a stimulus-secretion
coupling with metabolism, including carbohydrate degradation. Glucose is the major
hexose derived from carbohydrate-rich meals. Pancreatic β-cells capture glucose by specific
transporters, such as glucose transport proteins (GLUT-2), located in the plasma membrane.
Similar to other cells, β-cells degrade all six carbon atoms of glucose and convert the
energy contained in their molecules into a small metabolite, adenosine triphosphate (ATP).
Similar to neurons, β-cells are electrically excited. When depolarized, β-cells change their
architecture and functions. Immediately after ATP production, β-cells are depolarized and
a sequence of intracellular events occurs, culminating in the exocytosis of insulin in the
blood. Specifically, by increasing the ATP/ADP ratio, ATP inhibits the activity of ATP-
dependent potassium (K+

ATP) channels, which drive K+ ions into the extracellular medium
via gradient straining. Subsequently, K+ ions are trapped in the cytosol, which increases
the positive cell charge. In this case, depolarization enhances the activity of certain calcium
(Ca2+) channels, thereby promoting the influx of Ca2+ from the extracellular medium. The
free intracellular Ca2+ concentration increases and activates proteins that stimulate the
cytoskeleton to transport insulin vesicles to the periphery of the cell membrane, leading to
exocytosis. Together, these mechanisms are known as the “fuel hypothesis” that leads to
insulin stimulus-secretion coupling, where nutrients act as a fuel to induce insulin secretion
in pancreatic β-cells (Figure 1) [8].
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Figure 1. Glucose is transported to the β-cell mediated by the Glut2 membrane transporter. The
intracellular metabolism of glucose induces changes in electrical activity, which culminate in an
increase in the cytoplasmic Ca2+ concentration and exocytosis of insulin granules. The sweet taste
receptor TIR3 is expressed in the pancreatic β-cells and is activated by various sugars, including
sucrose, fructose, and glucose, and artificial sweeteners, such as stevioside, stimulating insulin
secretion by increasing the metabolism of nutrients to produce ATP.
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4. Great Conflict: Fuel Hypothesis vs. Glucose Receptor

In spite of the fuel insulin secretion-coupling, glucose stimulates insulin secretion in
pancreatic β-cells, despite maintaining potassium-ATP channels under lowered activities,
indicating an alternative pathway as a mechanism for glucose and other fuel metabolites
to amplify their stimulation via ATP. This alternative mechanism can also be observed in
neurotransmitters, such as acetylcholine, which bind to plasma membrane receptors and
mediate an increase in intracellular Ca2+ levels and the ability of activated protein kinase C
to increase the efficiency of Ca2+ in insulin exocytosis [8,9]. Therefore, glucose acts as the
primary nutrient stimulating insulin secretion. Other nutrients, amino acids, and free fatty
acids are capable of increasing insulin secretion, mostly through mechanisms involving the
fuel hypothesis; however, the presence of glucose is required for them to be effective.

Numerous other hexoses and other monosaccharides, heptoses, pentoses, tetroses
and trioses, aldoses or ketoses, or conjugated glucosamine can directly stimulate β-cells,
coupling insulin secretion to energy transformation using carbohydrates as a nutrient;
however, some of them, such as fructose and mannoheptulose, have demonstrated no or
a weak capacity [10,11]. The fuel hypothesis was initially based on an artificial leucine,
2-amino-bicycle (2,2,1) heptane-2-carboxylic acid, which does not break down; however, it
stimulates the metabolism of cells to produce ATP and induces insulin secretion [12].

Four decades of evidence collected through clinical and experimental trials support
the idea of stimulus secretion-coupling for the metabolism of pancreatic β-cells. A recently
proposed idea suggests that β-cells are equipped with receptors for glucose or nutrient
secretagogues, such as monosaccharides, amino acids, and free fatty acids; however, these
receptors have not yet been isolated. Despite this complex controversy, it has been shown
to be a receptor for sweetness in the β-cell membranes.

5. β-Cells Sense Sweet, Bitter, Umami, and Salty Taste

Natural sweeteners, such as glucose and fructose, or artificial sweeteners with no
caloric value, such as some fractions from Stevia rabaudiana bertonni leaves, sucralose ex-
tracted from sugar cane, aspartame from laboratory synthesis of amino acids, and cyclamate
and saccharin obtained from petroleum, can bind to β-cell sweet taste receptors. The het-
erodimer comprises two members of the class C G protein-coupled receptor: type 1 taste
receptor-2 (T1R2) and T1R3 (the dominant subunit expressed in pancreatic islets) [13–18].
Once sweeteners bind, they target a response to accelerate the degradation of stored nu-
trients, such as glucose, amino acids, and free fatty acids, to produce ATP and stimulate
insulin granule exocytosis (Figure 1) [19].

6. Sugar Sources Potentially Transport Poisons or Medicines to β-Cells

The occidental diet is rich in glucose and fructose, which are the major sources of
carbohydrates from different mono-and/or polysaccharides such as sucrose, starch, and
sugar from other farinaceous foods. Most of these are processed by industries, eliminating
other macro- and micro-compounds, fibers, and vitamins. High level daily consumption
of carbohydrate sources can compromise the β-cells [20]. β-cells can be killed or become
dysfunctional due to glucotoxicity, leading to type 2 diabetes (non-insulin-dependent) [21].
The impact of different sources of monosaccharides on β-cell function can be dependent
on the amount consumed, carbohydrate source type, and environment. In some countries,
there is a massive intake of fructose-rich corn syrup. This carbohydrate is captured less
by β-cell, contrasting with hepatic cells. Most fructose metabolism occurs in the liver, and
its excess causes hepatic dysfunction, which indirectly perturbs β-cell function through
high glucose production and hepatic fat dysfunction [22]. Other sources of carbohydrates,
such as manioca or sweet potato, and other vegetables and fruits rich in natural fiber,
are less dangerous to β-cells [23]. Fibers stimulate intestinal contraction and increase
intestinal transit, which reduces monosaccharide absorption, thus helping in glycemia
attenuation [24,25]. One important effect of these sugar sources is the reduced insulin
secretion from β-cells, which does not demand an increased amount of circulating insulin
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to maintain low glycemia. Under these conditions, cells are protected from glucotoxicity. In
contrast, diets with low fiber are associated with an increased risk of type 2 diabetes, which
has been observed in women with a sedentary lifestyle and family history of diabetes [26].

Apart from fibers, fruits and artificial sweeteners also contain antioxidants, which
can help protect β-cell function [27,28]. However, sugars with a high reducing capacity,
such as ribose and fructose, can suppress insulin gene transcription and provoke oxidative
stress-inducing apoptosis of β-cells [29].

7. Environment as Vectorial to β-Cell

Although we discuss β-cell function and focus on the mechanisms of insulin secre-
tion stimulated by carbohydrates, it is important to consider the myriad of biological
factors. Pre-and postprandial time durations have the potential to stimulate, potentiate,
or inhibit insulin secretion processes. Any pancreatic β-cell dysfunction combined with
high carbohydrate consumption can compromise entire metabolic regulation and provoke
cardiometabolic diseases, such as obesity, diabetes, and hypertension [30].

The autonomic nervous system controls β-cell function. Under normal physiological
situations of meal intake, the parasympathetic nervous system (PNS) potentiates glucose-
insulin secretion coupling, whereas the sympathetic nervous system (SNS) inhibits it [31,32].
This is an equilibrium action; however, an imbalance may occur, as in obesity, where PNS
is enhanced and SNS is decreased. Under these conditions β-cells oversecrete insulin,
which causes fasting hyperinsulinemia, tissue insulin resistance, and high hepatic glucose
production leading to excess blood glucose concentrations; thus, excessive carbohydrate
consumption can aggravate metabolic dysfunction [33,34].

The central nervous system directly regulates insulin secretion. Recently, it was
shown that the paraventricular hypothalamic nucleus (PVN), when stimulated immediately,
suppresses the insulin secretion process via SNS neurons connected to β-cell; conversely,
low blood glucose concentration is detected by the PVN, which allows rapid increase of
glucose-induced insulin secretion. High sugar intake disrupts the central control of insulin
secretion, causing cardiometabolic dysfunction [35,36].

Exercise is another important factor. Physical training improves the peripheral tissue
insulin sensitivity, which reduces the demand for insulin secretion. Exercise also induces
irisin from the muscle, which directly potentiates glucose-induced insulin secretion from
β-cells; however, even physically trained individuals consuming calorie-dense diets can
develop β-cell malfunction [37,38].

Additionally, overconsumption of fructose affects the gut microbiota. The gut micro-
biota consists of numerous gastrointestinal microorganisms. Diet, including the carbohy-
drate source and their quantities, can determine microbiota composition. High fructose
consumption causes dysbiosis of the microbiota, which leads to increased gut barrier
permeability, inflammation, and the progression of metabolic diseases [39].

Since the 18th century industrial revolution, the environment has changed consider-
ably, ultimately compromising the health of human beings as well as that of animals and
plants. Air, water, and food sources contain acids, heavy metals, plastics, and radiation,
among many other poisons, that have the ability to disrupt metabolism, causing car-
diometabolic dysfunction [40]. The β-cells are also a target for contaminants that combine
with occidental diet increasing the risk of disrupting the insulin secretion process [41].

8. Conclusions and Future Perspectives

Considering that β-cells are a highly sensible target in many stressful situations, they
exert their effects in a combined manner. Thus, it can be concluded that it is difficult to
analyze the impact of different carbohydrate sources on pancreatic β-cells.

Given the delicate nature of β-cells as an “organ”, numerous studies have suggested
changes in the occidental diet to reduce the exposure of certain carbohydrates to the β-cells.
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