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Abstract: An online risk prediction tool is developed to calculate a user’s risk of developing type II
diabetes mellitus (T2DM). The risk prediction is based on the user’s input of medical lab information,
such as age, sex, body mass index, fasting blood sugar, triglycerides, and high-density lipoprotein
levels. The calculator is modelled using a logistic regression model, and it is trained using the medical
records of over ten thousand Canadian patients. This newly developed tool is intended to serve
physicians and patients in predicting future diabetes risk and take early preventive measures.

Keywords: diabetes mellitus; logistic regression model; machine learning; predictive models; online
risk tool

1. Development of the Online Risk Tool

Diabetes has continuously proven to be a challenging chronic disease for the general
population. In the machine learning era, predictive models have been proposed in the
literature to predict diabetes risk based on various types of predictors. For instance,
Tigga and Garg [1] assessed the performance of a random forest classifier to predict type
2 diabetes in the Indian community, based on health, lifestyle and family background
factors. The model was applied to the Pima Indian Diabetes data and showed results with
a specificity of 66.1% and a sensitivity of 78.9%. Kopitar et al. [2] investigated the early
detection of T2DM using machine learning-based prediction models given 6 months of
available data. Zhang et al. [3] used machine learning models such as logistic regression,
random forest, and gradient boosting machines to predict type 2 diabetes in a rural Chinese
population. De Silva et al. [4] conducted a systematic review and meta-analysis of more
than 20 machine learning models that are tasked with predicting the risk of type 2 diabetes
in a community setting. The primary objective of the research study was to determine the
predictive power and performance of the identified machine learning models. The results
show that the models performed well in terms of predicting the presence of diabetes in
patients. However, there is a lack of online tools which implement the existing machine
learning models for practitioner use. In this paper, we introduce an online risk prediction
tool for type 2 diabetes developed by a team of experts with different backgrounds, such as
doctors, clinical IT architects, statisticians and computer scientists. It is hoped that the new
tool will bring forth significant contributions to early disease prevention and personalized
medical care for diabetes patients.

Hang et al. [5] proposed effective predictive models including a logistic regression
model and a gradient boosting machine model, to predict the risk of type 2 diabetes
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mellitus in Canadian patients. To make the predictive tool accessible to physicians and
patients, we developed a web application that implements the logistic regression model
in [5]. This is an online risk tool for predicting type 2 diabetes mellitus, where a user may
input his/her laboratory information to obtain the risk prediction (http://www.yorku.ca/
xingao/t2diabetesPredictor.html, accessed on 29 June 2021). The model is trained from the
electronic records of Canadian patients obtained from the Canadian Primary Care Sentinel
Surveillance Network (CPCSSN). The dataset includes patients ranging from 18 to 90 years
old, along with their laboratory information which are used as the predictors of the disease:
age (at time of examination), sex, fasting blood glucose, body mass index, lipoprotein
levels (high- and low-density), triglycerides, and systolic blood pressure. Figure 1 outlines
the criteria for how these predictors were selected via a flowchart. The dataset used by
the predictive model was curated through a process that is summarized in Figure 2. For
healthy individuals, we used the last visit in their record; for diabetes patients, we used
the last visit before their disease onset time. In the end, 13,309 records were used by the
predictive model.

Approximately 20.9% of the records exhibit disease status with type 2 diabetes mellitus.
In the data, 40% of the observations are male while 60% are female. Ages were categorized
according to the following groups: young (<40 years old), middle-aged (40–64 years old),
senior (65–84 years old), and elderly (>85 years old). About 44.6% of the patients make up
the middle-age category, 47.8% are seniors, 4.8% are elderly, and 2.9% belong to the young
group. The body mass index is calculated as the result of dividing a patient’s weight (in
kilograms) by the square of the height (in meters). It was observed that the BMI ranges from
11.2 to 70 among patients, with a median of 28.9. The distributions of BMI, fasting blood
glucose, high-density lipoprotein and triglycerides are right-skewed. The most important
predictors in predicting Type II diabetes risk are fasting blood glucose, body mass index,
high-density lipoprotein and triglycerides, each factor having a p value < 0.0001. In fact, the
results show that these predictors were all strongly linearly associated with the outcome of
diabetes mellitus on the logit scale. The coefficients of these variables were estimated to be
1.963, 0.023, −0.894, and 0.158, respectively, while the odds ratio of these predictors were
calculated as 7.122, 1.024, 0.409, and 1.171, respectively. It was also shown that age proved
to be a significant factor as well. With the middle-aged group as the reference, the elderly
group has a p value of <0.0001, the senior group with a p value of 0.036 and the young
group with a p value of 0.170. These three age groups have odds ratio of 0.436, 0.881, and
1.269 compared to the middle-aged group. Sex is also shown to be a contributing factor
that influences the disease risk with a p value < 0.0001; males have an estimated coefficient
of −0.250 with odds ratio 0.779 compared to female group. Meanwhile, the predictors
systolic blood pressure and low-density lipoprotein proved to be insignificant to the model.
We also provide the 95% confidence intervals for the odds ratio and the average predicted
probability for each predictor in Table 1. In checking for the assumptions of the model, no
severe collinearities were found and that the computed variance inflation factor (VIF) was
shown to be less than 1.5.
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Our online risk tool was built using HTML5 as the main framework of the web
application, front end CSS3 for the site’s style design, and back end JavaScript for the
application’s functionality. See Appendix A for a more thorough discussion on the web
development of the application. The prediction tool, through a simple form, prompts
the needed information from the user; the results can then be displayed and interpreted
immediately. Our online web tool also provides brief descriptions of each parameter being
prompted. Validated on the data set of 13,309 Canadian patients, our web tool achieves
satisfactory results. The prediction tool has a sensitivity of 77.3%, a specificity of 71.3%, and
an area under the receiver-operating characteristic curve of 0.74, based on a 0.20 threshold
value. Steyerberg et al. [6] specified other specific metrics including balanced accuracy,
calibration slope and discrimination slope to evaluate a classification method. For our
model, the balanced accuracy is 0.743, the calibration slope is 1.01 and the discrimination
slop is 0.26, respectively. The plots for the calibration line and the discrimination box are
provided in Figure 3.
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To use the online risk tool, the user enters the predictor values which are readily
available from the patient’s lab results. The online tool predicts and displays the future
risk of type 2 diabetes mellitus for the user. This tool can display the user’s risk in terms
of risk likelihood (0–1), risk level: insignificant risk of DM (likelihood < 0.01), low risk of
DM (0.01 < likelihood < 0.20); moderate risk of DM (0.20 < likelihood < 0.50); moderate-
high risk of DM (0.50 < likelihood < 0.75); high risk of DM (likelihood > 0.75)), and an
associated message based on the risk level. To determine the cutoffs of likelihood for
different risk levels, we considered the 0.20 cutoff value which was be determined by
the best combination of sensitivity and specificity metrics. Then, we used this 0.20 to
dichotomize between the “no risk” and the “risk” group. Within the group having no risk,
we further subdivided the groups into “insignificant risk” and “low risk”. We used 0.01 as
the cutoff. Similarly, in the group with risk, we used 0.50 and 0.75 as the cutoff values and
further subdivided into three groups. We use the finer partition of five risk categories to
provide more information on the level of the risk.

We compute the odds of developing the disease for the five groups as follows:

odds =
Pr(with T2DM | risk category)

Pr(without T2DM | risk category)

where the risk categories are the five aforementioned risk groups. The values of the odds
are 0.0417, 0.0989, 0.4706, 1.7027, and 4.8824, for insignificant risk, low risk, moderate risk,
moderate-high risk, and high risk of DM, as summarized in Table 2. It can be observed that
the odds of developing the disease for the insignificant and low risk groups are rather low,
moderate for the moderate risk group and especially elevated for the moderate-high and
high risk groups.
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Table 2. Percentage breakdown of patients with/without the disease among the 5 risk categories.
The third row provides the odds of getting the T2DM disease given the risk of each category.

Insignificant
Risk Low Risk Moderate Risk Moderate-High

Risk High Risk

With T2DM 3.659% 8.702% 32.21% 63.37% 82.77%

Without T2DM 96.34% 91.30% 67.79% 36.63% 17.23%

Odds 0.0417 0.0989 0.4706 1.7027 4.8824

Currently, several diabetes risk calculators are available online. While our calculator
is clinical and is based on blood work, the Finnish diabetes risk calculator FINDRISC by
QxMD uses various genetic and dietary-based predictors such as the patients’ gender,
age, dietary and exercise habits, parental disease status, weight and height as predictors.
This calculator performed at 72% specificity and at 77% sensitivity [7]. The Canadian
Public Health Agency has an online diabetes risk calculator CanRISK [8], which is similar
to FINDRISC and uses gender, age, family history, ethno-cultural background, weight,
height, waist circumference, physical activity, diet, blood pressure, and blood sugar level
as risk factors. The Diabetes Risk Calculator [9] developed by the Omni Calculator Project
takes into account ethnicity and family history factors in addition to the typical factors
(i.e., sex, age, blood pressure, cholesterol, etc.). Other existing online risk calculators that
were developed as an initiative to reduce type 2 diabetes risk include the Australian Type
2 Diabetes Risk Assessment Tool [10] by the Baker IDI Heart Diabetes Institute and the
60-Second Type 2 Diabetes Risk Test [11] by the American Diabetes Association. What
distinguishes our prediction tool from the other risk prediction calculators is the fact that
this tool is modelled using routine laboratory results and the model is specifically trained
using records of Canadian patient laboratory results ordered by their family doctors. The
tool is trained and validated on a Canadian population. Figure 4 displays the graphical
interface of the online risk prediction tool. In our future work, we intend to consider any
other predictors as well, such as exercise habits, family history, and ethnic background
to further improve the performance of our risk tool. Another limitation of our online
risk calculator is the fact that in the data curation process, some patients with borderline
diabetes are removed. As a future work, we plan to include more borderline patients so
that the re-trained model could be used to identify borderline disease patients.

Currently, the data used for training and validating the model by our risk tool are not
stored online. Another future work that we intend to complete on our calculator is to store
all of these data, including any additional data that we collect in future into a working
real-time database. In this manner, we aim to construct our model to continuously “learn”
and produce progressively accurate and more improved results overtime. Additionally, we
aim to investigate how to use a risk tool to predict individual disease on-set time.

Several research works in the literature have assessed the performances of various
machine learning models in predicting the risk of a person developing type 2 diabetes
mellitus. However, the risk calculators that physicians can easily use are still inadequate.
Hence, we develop an online risk calculator to predict the risk of T2DM based on a user’s
medical lab data (age, sex, BMI, fasting blood sugar levels, triglycerides, and high-density
lipoprotein levels). Our tool is modelled using routine laboratory results and is trained and
validated on a Canadian population. With this online tool, we intend to support physicians
and patients in predicting the incidence of diabetes, thus allowing our medical experts to
provide timely preventive and personalized interventions.
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