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Abstract: The demand for genetic testing (GT) for prostate cancer (PCa) is expanding, but there is
limited knowledge about the genetic counseling (GC) needs of men. A strong-to-moderate inherited
genetic predisposition causes approximately 5–20% of prostate cancer (PCa). In men with prostate
cancer, germline testing may benefit the patient by informing treatment options, and if a mutation is
noticed, it may also guide screening for other cancers and have family implications for cascade genetic
testing (testing of close relatives for the same germline mutation). Relatives with the same germline
mutations may be eligible for early cancer detection strategies and preventive measures. Cascade
family testing can be favorable for family members, but it is currently unutilized, and strategies
to overcome obstacles like knowledge deficiency, family communication, lack of access to genetic
services, and testing expenses are needed. In this review, we will look at the genetic factors that
have been linked to prostate cancer, as well as the role of genetic counseling and testing in the early
detection of advanced prostate cancer.
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1. Introduction

Prostate cancer (PCa) is the most diagnosed cancer in men, with an estimated 268,490
and 34,500 newly diagnosed and died of prostate cancer in the United States in 2022,
respectively [1]. Although PCa may be asymptomatic at the early stage and often has an
indolent course of progression, it is the second leading cause of cancer-related death in men
behind lung cancer [2].

PCa is a highly variable illness; in fact, many individuals exhibit an aggressive disease
with progression and metastasis, but others exhibit a slow disease with a low tendency to
advance [3].

PCa can manifest clinically as a locally indolent illness or as a fast-developing, fatal
metastatic disease [4]. Even though most men are diagnosed with an organ-confined illness,
the long-term oncological prognosis might vary considerably [5].

In addition, histomorphology and molecular tumor features exhibit considerable
variation between patients and within a similar tumor [6].

Patients with early-onset PCa who have family members with PCa, or other heritable
malignancies are appropriate candidates for genetic testing [6]
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Histologically, these tumors are quantified using the Gleason score, which analyses
the degree to which the biotic prostate specimen resembles the normal prostate gland [7].

It has been well-established that prostate cancer has a reliable genetic association in
recent years. As a result, genetic testing has arisen as essential to prostate screening, under-
standing the role of genetic mutations in PCa diagnosis, and developing new treatment
approaches [8].

This review aims to emphasize the essential aspects of germline genetic testing for
PCa, the importance of family history, the role of genetic testing in screening, and the
clinical significance of DNA repair mutation genes in treatment strategies.

2. Prostate Cancer Heritability

Recently, the heritability of prostate cancer (PCa) has been highlighted; about 20% of
patients with PCa have a positive family history, which may develop not only because of
genetic factors but also due to environmental factors such as shared lifestyle and exposure
to the same carcinogenic elements [9]. In addition, several studies reported that about 5%
of PCa risk is due to genetic heritability [10–12].

Family history of cancer remains the cornerstone of genetic risk assessment, and
asking about prostate and non-prostate malignancies is essential for a thorough evaluation
of potential inherited cancer risk [13].

In 2016 two important studies reported the relation between PCa and family history;
the PCBaSE study demonstrated that the risk of developing cancer in men who had brothers
with PCa is highly notable; at the age of 65, the risk of developing cancer for those with
brothers who had PCa was three-fold more compared to those who did not have brothers
with PCa. At age 75, men with brothers having PCa had more than a two-fold risk compared
to those without brothers with PCa [14]. In Norway, a twin prostate cancer study was
conducted on more than 200,000 twins, both monozygotic and dizygotic, and this study
reported that more than 57% of PCa is attributed to genetic risk factors [15].

Additionally, in recent research of 3607 men diagnosed with PCa who underwent ge-
netic testing between 2013 and 2018, 17.2% were found to have germline mutations, whereas
37.2% did not meet the NCCN Guidelines for Genetic/Familial High-Risk Assessment
criteria for testing [16].

The argument that all men with PCa should be tested is thought-provoking, but the
cost-effectiveness and actionability of widespread genetic testing in early, low-risk PCa
settings without other risk factors remain unclear, which may lead to short-term unintended
consequences including clinical confusion and depletion of limited genetic counselling
resources with low yield [17].

On the other hand, clinical predictors of germline status, such as metastatic stage iv
or intraductal histology, emerging data about ductal histology, and/or history of second
or multiple primary cancers at a younger age, may assist in prioritizing candidates for
testing, as each has been independently associated with the presence of germline DNA
repair mutations [18].

3. Genetic Markers

Several genetic mutations have been linked to the development of PCa. DNA repair
(e.g., BRCA1, BRCA2, and ATM), DNA mismatch repair (e.g., MLH1, PMS2, MSH6, and
MSH2), and cell cycle regulation genes (e.g., TP53) are among the mutations that have been
targeted by researchers over the past years. Furthermore, other genes such as HBOX13
gene, important for prostate development, and CHEK2 gene, a tumor suppressor gene,
have been linked to increased risk of PCa in men. In this section, we are discussing in detail
the relationship between these genes and PCa. Table 1 represents a summary of the data
discussed in this review.
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Table 1. Summary of the available data demonstrating the link between gene mutations and prostate
cancer.

Gene Association

BRCA1 and BRCA2

• BRCA2 has more impact on the development as well as the prognosis of PCa
than BRCA1.

• Presence of these mutations is associated with a three to nine-fold increase in the
risk of development of PCa.

• Higher risk of high-grade illness and progression to metastatic castrate-resistant
prostate cancer.

ATM • Relative risk of metastatic prostate cancer is 6.3%

PALB2 • Potential association between PALB2 mutation and aggressive forms of PCa.

MLH1, PMS2, MSH6, and MSH2 • Carriers of pathogenic variants have a higher incidence of PCa compared with
non-carrier. (5–24%)

HOXB13 • Increased risk of early-onset PCa.
• Increased de novo lipogenesis, cell motility, and PCa metastasis.

TP53 • Higher relative risk of PCa in individuals with TP53 mutation.
• TP53 variants are associated with advanced PCa.

CHEK2 • CHECK2 1100delC mutation is associated with moderate increase in the risk of
development of PCa.

FGF • Play a role in progression and metastasis.
• Associated with worse prognosis.

CCNE1 • Higher expression level is associated with a higher tumor grade.

3.1. DNA Repair Genes

Mutations in DNA repair genes occur in up to 10% and 17% of localized and metastatic
PCa, respectively [16,19–22]. Sixty-four percent of BRCA2 mutations in prostate cancer are
frameshift, 31% are missense, and 5% are splice. The BRCA1 gene contains 63% missense
mutations, 31% frameshift mutations, and 6%splice mutations [6]. Moreover, an aggressive
phenotype was identified in a study of PCa patients with BRCA1/2 mutations [23,24]. As
regards the ATM gene, 50% of mutations found in PCa are missense, 37% frameshift and
13% splice. ATM variants were associated with the aggressive and lethal phenotype of
Hereditary Prostate Cancer (HPCa) disease.

In 2015, an international study explored 150 biopsies from patients with metastatic
PCa, and the study reported many genetic mutations; 23% of men had DNA repair genes
mutation, including BRCA1, BRCA2, and ATM [22]. DNA repair gene mutations have also
been associated with metastasis of hormone-sensitive PCa [25].

3.1.1. BRCA1 and BRCA2

BRCA1 and BRCA2 are associated with ovarian and breast cancers and play an
essential role in PCa predisposition. BRCA2 mutation has been associated with an increased
risk of PCa, higher mortality, and a younger diagnosis of PCa than BRCA 1 mutation [19].

The relative risk of developing PCa in BRCA2 mutation carriers compared to non-
carriers is between three- to nine-fold by the age of 65 [26,27]. BRCA2 mutation has been
demonstrated in more aggressive subtypes of PCa [28]. Gallagher et al. showed that the
risk of developing PCa in BRCA 2 mutation is three times higher than non-carriers, and the
risk of recurrence and PCa-related death is also higher than non-carriers [29]. In another
study, the risk of developing PCa in BRCA2 mutation carriers was estimated to be four-fold
higher than the carriers of BRCA 1 [30]. All these studies demonstrated that carriers of
BRCA 2 have an increased risk of developing PCa than BRCA 1 carriers [31].

Remarkably, germline changes were independent of an earlier age at diagnosis and
an aggressive phenotype. As well as BRCA2 mutation carriers had a lower survival
rate (61.8%) than males who did not carry the mutation (94.3%). Additionally, BRCA2
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pathogenic mutations were linked with an increased risk of high-grade illness and progres-
sion to metastatic castrate-resistant prostate cancer (mCRPC). In addition, BRCA2 germline
mutations contributed more to the increased PCa risk than BRCA1 mutations [32–34].

3.1.2. ATM

ATM is located on chromosome 11 and is a crucial component of the DNA damage
response system. Ataxia telangiectasia syndrome is caused by homozygous loss-of-function
mutations in ATM. Notably, it is also one of the known HBOC susceptibility genes; in fact,
carriers of the ATM mutation have an elevated chance of developing breast, colorectal,
gastric, and pancreatic cancers. Recently, the use of sequencing panels incorporating DNA-
repair genes has also made it possible to identify germline ATM mutations in males with
prostate cancer [35]. The relative risk of metastatic prostate cancer was 6.3% among ATM
carriers [36].

Although ATM is the second most common alteration in PCa after BRCA 2, most
studies demonstrate that ATM mutation is not associated with the same developments
as BRCA 2 [22]. In 2015, Helgason et al. identified that the loss of function of the two
variants of ATM was associated with PCa and gastric cancer [37]. However, more research
is required to demonstrate the role of ATM gene mutation and PCa.

3.1.3. PALB2

PALB2 is located on chromosome 16; first discovered as a BRCA2-interacting protein,
it is a crucial component in the creation of the BRCA complex. Indeed, PALB2 serves
as a link between BRCA1 and BRCA2 to induce homologous recombination. It is one
of the DNA repair genes; PALB2 mutations are connected with HBOC risk, especially
breast and pancreatic malignancies, but few studies have revealed PALB2 variations in PCa
patients [38].

However, the precise role of PALB2 in developing PCa is indistinct. Earlier studies did
not demonstrate a clear association between PALB2 mutation and inherited PCa [39–41].
However, most recent studies highlighted the potential association between PALB2 muta-
tion and the inheritance of aggressive forms of PCa [42,43]. As the PALB2 mutation is rare,
more research and studies should be conducted to profoundly investigate the relationship
between this gene and PCa development, the biological significance, and the potential
treatment strategies of PCa [44].

3.2. DNA Mismatch Repair Genes

Lynch syndrome has been associated with endometrial cancer and colorectal carcinoma
due to the mutation of mismatch repair genes. However, recently PCa has demonstrated
a strong linkage to the mutation of the mismatch repair genes, including MLH1, PMS2,
MSH6, and particularly MSH2. Bancroft et al. conducted a prospective international study
that assessed PSA screening in patients with carriers of MSH2, MSH6, and MLH1 mutation
genes; carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of PCa
compared with non-carrier controls which have been matched in age. However, PCa was
not reported in carriers of MLH1 [45].

The Database of Lynch syndrome reported a prospective development of PCa in 28%
(1808/6350) of men with Lynch syndrome. At the age of 75, the carriers of MSH2 and MSH1
mutations had an incidence of PCa up to 24% and 9%, compared to MLH1, and PMS2, who
demonstrated an incidence of PCa up to 14%, and 5%, respectively [46].

3.3. HOXB13 Gene

The HOXB13 is a homeobox transcription factor, localized on chromosome 17. The
HOXB13 gene produces a protein called a transcription factor, which plays a role in prostate
development; however, the mechanism and pathways that lead to PCa development are
unclear. HOXB13 was one of the first inherited genes related to PCa given its effect on the
androgen receptors. Furthermore, it was shown to be associated with an increased risk of
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early-onset and the overall incidence of PCa in white men [19,47]. In a study by Pomerantz
et al., HOXB13 together with FOXA1 was shown to cause an extensive reprograming to
androgen receptor cistrome (i.e., transcription factor binding sites) which in turn plays a
role in the development of PCa [48].

In 0.7% to 1.4% of prostate cancer cases and 6% of PCa patients with early onset,
mutations have been reported [49]. A previous study indicated for the first time that
individuals with the recurrent germline mutation G84E in HOXB13 had considerably
increased risks of developing PCa compared to those without the mutation [47]. In 2015,
Robson et al. reported the frequency rate of the HBOX13 G48E variant of 1.1 on 3607 patients
with PCa [50]. In 2021, Loeb et al. also demonstrated that the frequency of the HBOX13
G48E variant at 1.4% in patients with PCa compared to 0.1% in patients without PCa [51].
Interestingly, in a recent study that was published in 2022, loss of HBOX13 was shown to
increase cell motility in vitro and PCa metastasis in mice [52]. The authors have shown
that the MEIS domain of HOXB13 interacts with HDAC3 (i.e., Histone deacetylases-3)
suppressing the de novo lipogenesis through expression of lipogenic regulators such as fatty
acid synthase. These regulators play an important role in producing elements necessary for
sterol biosynthesis [53,54]. Loss of this interaction results in increased de novo lipogenesis
and, consequently, tumorigenesis and metastasis. This was later confirmed in the same
experiment in which inoculating mice with HOXB13 knockdown PCa cells was associated
with higher rate of metastasis compared to controls [52]. This data could be of great value in
selecting patient who would benefit from newer agents such as fatty acid synthase (FASN)
inhibitor (e.g., TVB-2640) which currently being tested in a clinical trial. Such agents may
have the potential to decrease lipogenesis and, eventually, tumor growth.

3.4. TP53 Gene

TP53 is a gene responsible for the production of proteins that regulate cell division
and cell death [55]. Because of its function, it plays a role as a tumor suppressor gene
in which its deletion or mutation has been associated with the development of several
tumors [56]. An example of this association is Li Fraumeni syndrome (LFS) which is an
inherited condition characterized by an increased risk for certain types of cancer early in life,
most commonly breast and adrenal cancers besides sarcomas, leukemias, and lymphoma.
A multi-center study was conducted to assess the relationship between TP53 gene mutation
and PCa, and the study identified about 31 patients (19%) with PCa among 163 LFS males
and 117 LFS patients without PCa, six of them developed PCa over a median of three years
of follow-up [57]. The same study reported 38 patients out of 6850 who have TP53 which
reflects a higher relative risk by 9.1-fold than the control population. Additionally, the
presence of the TP53 mutation was associated with more advanced disease. The gTP53
predisposes to aggressive prostate cancer; therefore, PCa should be considered as a part of
LFS screening protocols, and TP53 should be considered in germline screening of PCa [57].

3.5. CHEK2 Gene

The CHEK2 gene, localized on chromosome 22, encodes for a tumor suppressor that
participates in the DNA damage signaling pathway [58]. The CHEK2 gene and its role in
developing inherited PCa are still unclear because of the rarity of the studies. However, the
mutation of the CHECK 2 variants, particularly 1100delC, has demonstrated a moderate
increase in the risk of development of PCa [59]. Moreover, a meta-analysis of 12 studies
of the CHECK2 c.1100delC variant was conducted to clarify the relationship between this
variant and PCa inheritance. About half of these studies demonstrated that CHECK2
c.1100delC is associated with an increased risk of PCa [60]. However, more retrospective
and prospective studies are required to emphasize this relation and the role of genetic
screening of PCa patients for CHECK2 gene variants.
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3.6. Fibroblast Growth Factor (FGF) Genes

FGF genes encode fibroblast growth factor receptors, a group of receptors that regulate
cell proliferation and differentiation during development and tissue repair [61]. Alteration
to the FGF gene was shown to be associated with several cancers. For example, elevation
in FGF expression was reported in patients with breast cancers [62]. Furthermore, point
mutations in R78H, S249C, F384L, A391E, and G388R of the FGF genes have been observed
in patients with PCa [63–65]. Moreover, in a recent meta-analysis, G388R polymorphism
was associated with worse prognosis in cancer patients including those with PCa [66].
Interestingly, FGF has been also reported to play a role in cancer progression and metastasis
in mice models [67]. Consequently, this gene has become the target for researchers to utilize
as a potential therapeutic option [68,69].

3.7. Cyclin E1 Gene

Cyclin E1 (CCNE1) is one of the genes that regulate the transition from the G1 to the S
phase of the cell cycle [70]. This gene has been implicated in different types of cancer such
as breast and liver cancer [70–73]. Furthermore, several studies have suggested a potential
role for CCNE1 as a prognostic and therapeutic tool [71,74,75]. In a recent study that was
published in 2022 which investigated the role of CCNE1 in PCa, polymorphism CCNE1
rs997669 was not associated with a significant impact on prostate cancer risk [76]. However,
a higher expression level of CCNE1 was significantly associated with a higher tumor
grade [76]. In in vitro and in vivo studies, CCNE1 was shown to be regulated through
speckle-type POZ protein (SPOP) in a way that over-expression of SPOP suppresses the
tumor cell’s progression [77]. Interestingly, this observation was limited to certain cell lines
including prostate and bladder cancer. Furthermore, the wild-type SPOP was shown to
have the opposite effect on these cell lines [77]. Although the exact underlying mechanism
that would explain this mode of selectivity and variability in the effect is still unknown,
this area of research should receive more attention as it could unveil a potential novel
therapeutic option for PCa patients [78].

4. Clinical and Therapeutic Implications of Genetic Testing

Recommendations by different societies concerning genetic testing are variable, how-
ever, generally, testing is advised in patients who have a strong family history of PCa. This
includes PCa in first and second-degree family members or multiple family members who
were diagnosed before the age of 60 or died from PCa, hereditary Lynch syndrome, and
hereditary breast, and ovarian cancer. This approach aims to enhance the ability for early
detection and management of the condition [19,79–82].

Based on the recommendations of experienced societies, the genetic testing of PCa
has been guided by some panels. If genetic testing is being performed in the context of
advanced PCa, BRCA1, BRCA2, ATM, PALB2, CHEK2, MLH1, MSH2, MSH6, and PMS2
should be included due to potential treatment implications, although this list is expected to
be refined over time [44].

Among the potential consequences of germline testing is the detection of a muta-
tion (pathogenic or potentially pathogenic variation), which may indicate further PCa
treatment options and clinical trials and provide information regarding the risk of other
malignancies [19].

This result would also indicate a 50/50 chance that first-degree relatives inherited
the same risk gene and thus would prompt a recommendation for the patient to share
this information (including a copy of test results) with relatives and for referral of family
members to genetic counseling for cascade genetic testing. Insurance often covers single-
site testing for a particular mutation at low cost. Another possible outcome is a variation of
unknown significance (VUS), which implies that existing data in the field were inadequate
at the time of test interpretation to define the finding as either benign or pathogenic. A
VUS result should not be used to direct clinical management [83].
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Other studies are available to help reclassify VUS, and these can be discussed with a
genetic counselor. In one study, 7.7% of VUS results were reclassified: 91% as benign/likely
benign and 9% as pathogenic/likely pathogenic. It is also possible that no alterations were
found therefore (a benign result). The absence of a single mutation linked with hereditary
cancer risk does not eliminate the higher risk of prostate cancer among family members
with a strong family history. If testing is negative (benign, without mutations) or a VUS is
identified, the clinical family history should be utilized to guide cancer screening for family
members [84].

In 2017, the AUA/ASTRO/SUO guidelines recommended that patients with localized
PCa and a strong family history of specific cancers (breast, ovarian and pancreatic) should
be suspected of high-risk PCa and referred to genetic counseling and testing [80].

In 2019, the Philadelphia Prostate Cancer Consensus Conference provided recommen-
dations for genetic testing criteria for PCa [19]. In addition, this consensus conference
remarked that genetic testing should be strongly recommended for men with metastatic
castration-resistant prostate cancer (mCRPC) and metastatic hormone-sensitive prostate
cancer (mHSPC) and men with a strong PCa family history of first, second-degree, or mul-
tiple male relatives diagnosed with PCa at age <60 year or who died from metastatic PCa
Additional criteria were considered for testing. These criteria are pathologic criteria (intra-
ductal pathology), stage (advanced disease), and family history criteria (Ashkenazi Jewish
ancestry, or Lynch syndrome, especially if diagnosed at age <50 year or with ≥ 2 cancers
in the HBOC). DNA repair genes (particularly BRCA2 and BRCA1) were recommended
for genetic counseling and testing based on personal and family history regardless of the
stage [19]. Moreover, in 2019 consensus recommendations recommended that the majority
of men with newly diagnosed metastatic PCa should undergo genetic counseling and
testing for BRCA1 and BRCA2 [82].

In 2020, EAU guidelines summarized the increase of germline mutations and their
impact on clinical management, particularly for PARP inhibitor response, and the 2020
AUA/ASTRO/SUO advanced prostate cancer guideline recommended that patients with
metastatic hormone-sensitive PCa should be offered genetic counseling and testing regard-
less of age and family history [81].

In addition to the benefit of using genetic testing as a screening and diagnostic tool, it
can also be used as a guide for treatment selection. Poly (ADP-ribose) polymerase (PARP)
inhibitors are a new anticancer group that was specifically designed to target the DNA
damage response in BRCA1/2 mutated breast and ovarian cancers [85]. Currently, several
members of this group are being studied for the treatment of PCa. Of these agents, ola-
parib and rucaparib have recently received FDA approval for the treatment of men with
metastatic, castration-resistant PCa harboring a BRCA1 or BRCA2 gene mutation [86,87].
Olaparib, which was tested in patients with a mutation in genes related to homologous
recombination repair, has been shown to enhance progression-free survival compared to
enzalutamide or abiraterone [87]. Additionally, in a study that included 115 patients, who
have BRCA alteration, rucaparib (at ≥1 dose) resulted in an objective response rate of 43.5%
(95% CI, 31.0% to 56.7%; 27 of 62 patients) and 50.8% (95% CI, 38.1% to 63.4%; 33 of 65 pa-
tients) per independent radiology review and investigator assessment, respectively [86].
Furthermore, the confirmed PSA response rate (≥ 50% decrease from baseline) was 54.8%
(95% CI, 45.2% to 64.1%; 63 of 115 patients) [86]. Talazoparib and niraparib have also
shown good efficacy in the management of PCa patients with niraparib receiving the FDA
breakthrough therapy designation for the treatment of patients withBRCA1/2-mutated
metastatic castration-resistant PCa therapy in October 2019 [88–90].

While several trials are still ongoing investigating the efficacy of this anticancer
group alone and in combination with other anticancer agents such as programmed cell
death protein-1 inhibitors for the management of PCa (NCT05501548, NCT04824937,
NCT04030559, NCT04703920, NCT05327621, NCT04550494, NCT02854436, NCT04179396,
NCT02975934, NCT04821622, NCT01078662), this highlights the importance of genetic
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testing in formulating the treatment plan for these patients, especially those who failed to
respond to the conventional treatments [91–102].

Another interesting treatment option that is being studied as a potential therapeutic
target for several cancers is FASN inhibitors [103–105]. Lipogenesis is a critical process
that solid tumors rely on to secure an energy source sufficient for their growth, which
is achieved via de novo lipid synthesis [106]. PCa is among the tumors that exhibit this
behavior which makes it a suitable candidate for this drug group [107]. Over the past years,
several molecules that possess an inhibitory effect on FASN have been reported in the
literature such as GSK2194069, JNJ-54302833, IPI-9119, and TVB-2640 [108]. Only TVB-2640
has moved into clinical testing and, currently, five ongoing trials targeting subjects with
solid tumors such as breast cancer and PCa (NCT03179904, NCT05743621, NCT02980029,
NCT03808558, and NCT03032484) [109–114]. Keeping in mind the role of HOXB13 in
regulating lipogenesis, patients with deletion or mutation to this gene could be a good
candidates for FASN inhibitors.

Given the role the FGFR plays in PCa, inhibitors for these receptors represent a
promising therapeutic option. Data from preclinical and clinical studies support a potential
role for these agents as a novel therapeutic option [69,115]. For example, pemigatinib, a
tyrosine kinase inhibitor that acts on FGFR and is approved by the FDA for the management
of cholangiocarcinoma and myeloid/lymphoid neoplasms, actively inhibited the growth of
PCa cells in in vitro and in vivo models [116]. Interestingly, the activity of the androgen
receptors seems to affect the response to these agents as reported by Bluemn et al. Based on
the results from their study they suggested that FGFR inhibitors are specifically active in
castration-resistant prostate cancer patients with absent or limited AR function [117]. Thus,
genetic analysis for androgen receptors to determine any mutation, such as amplification,
could be of value before starting such agents.

5. Conclusions

According to the clinically significant prevalence of germline genetic mutation, ge-
netic testing has increased as an indication of screening in PCa patients, especially the
advanced and metastatic cases. Furthermore, with the comprehensive support of recent
studies, genetic testing is expected to be widely integrated into all PCa patients, which will
help in clinical assessment and critical decisions in treatment strategies for patients with
inherited PCa.

Therefore, a clear policy regarding genetic testing could point to more accurate active
surveillance as a management strategy for patients with low-risk PCa. More retrospective
and prospective studies are required to achieve, advance, and support the theory of genetic
testing in the upcoming years.
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