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Abstract: MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with
the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with
bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central
nervous system disorders including psychological disorders has been demonstrated. Addition-
ally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such
as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients
with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multi-
ple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The
PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might pro-
mote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications
may happen across various organs including CNS, cooperative care with individual experts is also
necessary for managing patients with MAFLD/NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most ordinary liver disease with
a worldwide incidence of approximately 25% [1]. NAFLD is now related to a heavy
socioeconomic burden. The feature of the disease is hepatic steatosis with the accumu-
lation of surplus fat in the liver and metabolic liver dysfunction. Therefore, it has been
suggested that NAFLD should be retitled as metabolic disorder-associated fatty liver dis-
ease (MAFLD) [2,3]. Here, we use the term MAFLD instead of NAFLD. MAFLD is often
supposed to be practically asymptomatic. However, many MAFLD patients complain
of exhaustion, which may disturb their quality of life (QOL). Impaired QOL in patients
with MAFLD may be associated with depression and fatigue, and together they might
hinder various physical activities. Published information could also support the role of
inflammation in both depression and MAFLD, suggesting that both illnesses are corre-
lated [4]. In addition, abnormalities in fat accumulation have previously been identified
in patients with motor neuron diseases such as amyotrophic lateral sclerosis (ALS) [5].
Fatty liver disease may characterize a non-neuronal clinical condition of various forms
of motor neuron disease [6]. Similarly, it has been reported an increased incidence of
MAFLD in patients with spinal and bulbar muscular atrophy, in which distinct changes of
hepatic gene expression in the patient of spinal and bulbar muscular atrophy have been
shown compared to others [7]. Most studies on the association of MAFLD with these
neurological disorders in the central nervous system (CNS) or brain disorders have been
aimed at the investigation of pathophysiological bases of the comorbidity. Previous studies
have reported associations between gamma-glutamyltransferase levels and the onset of

Livers 2023, 3, 21–32. https://doi.org/10.3390/livers3010002 https://www.mdpi.com/journal/livers

https://doi.org/10.3390/livers3010002
https://doi.org/10.3390/livers3010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/livers
https://www.mdpi.com
https://orcid.org/0000-0002-8348-6274
https://orcid.org/0000-0003-4274-5345
https://doi.org/10.3390/livers3010002
https://www.mdpi.com/journal/livers
https://www.mdpi.com/article/10.3390/livers3010002?type=check_update&version=1


Livers 2023, 3 22

neurodegenerative diseases such as dementia [8]. Cross-sectional studies have emphasized
a strong positive association between sedentary time and MAFLD [9], proposing that
patients with motor neuron disease may promote the development of MAFLD owing to
reduced general mobility. However, the MAFLD phenotype might precede findings of
motor dysfunction [10]. Additional research is needed to understand the occurrence of
MAFLD in neurological disorders and to characterize the relationship of this process with
the underlying disease mechanisms.

It has been described that obesity is associated with liver disorders such as fatty
liver [11]. Obesity is the most prevalent risk factor for MAFLD [12]. Obesity is a medical
condition in which excess body fat increases to the point where it damagingly affects the
health of the host. Poor vitality in MAFLD patients might be along with the presence of
metabolic comorbidity such as obesity and then significant fibrosis might predict more de-
pressive symptoms [13]. In general, obesity is also related to inflammation. Obesity might
be characterized by chronic inflammation with undyingly increased oxidative stresses
through the production of various adipokines from adipose tissue in obesity. Much pub-
lished literature has established that obesity could increase proinflammatory cytokine
expression and/or decreases the production of anti-inflammatory cytokine [14]. It is well
recognized that obesity is involved in inflammatory and autoimmune diseases associated
with interleukin-17 (IL17) producing Th17 cells, which is also potential pathogenesis of
several diseases including type 2 diabetes [15]. Fructose is broadly used in processed
foods and numerous beverages. Excessive intake of fructose is well known to be related
to diabetes, which could also trigger hepatic steatosis and dyslipidemia, leading to the
development of metabolic syndrome including obesity and MAFLD [16].

2. Th17/Treg Balance Involved in MAFLD and/or Psychiatric Disorders

MAFLD as well as particularly its more serious form with non-alcoholic steatohepatitis
(NASH) could develop from metabolic syndrome, type 2 diabetes, and obesity, which may
develop a prominent cause of liver fibrosis [17]. Interestingly, an elevation in the number
of Th17 cells has been repetitively detected in the livers of MAFLD mouse models [18].
Likewise, raised number of Th17 cells in circulation and/or in the liver are also detected in
MAFLD/NASH patients [19]. It is familiar that CD4 positive T cells have diverse subset
cells such as Th1, Th17, and regulatory T (Treg) cells, which are categorized by expression
of corresponding diverse cytokines [20]. Th17 cells could stimulate liver inflammation
and/or liver fibrosis plausibly by playacting on liver cells mainly the Stellate cells and/or
Kupffer cells to speed up the liver fibrotic process [21]. Treg cells might play crucial roles in
controlling immune homeostasis. A decrease in cell numbers in hepatic Treg cells has been
also observed in animal models of MAFLD [18,22]. Furthermore, the numbers of circulating
Treg cells and/or resting Treg cells in the liver may be lower in MAFLD patients than that
in healthy controls with an even more vigorous decrease in patients with NASH [19,23].
Treg cells might have double roles in NASH because of their spatial and/or time-based
actions in the development of this disease. Therefore, the Th17/Treg ratio in the liver might
be valuable in classifying patients with MAFLD/NASH from those with light-degreed or
simple steatosis. Th17/Treg balance could also affect the levels of various inflammatory
cytokines in MAFLD patients [24] (Figure 1).

The Th17/Treg balance has been suggested to play an important role in the patho-
physiology of depression. In fact, major depressive disorder has been revealed to bring a
substantial increase in the cell number of peripheral Th17 cells and an apparent decrease
in Treg cell numbers, exhibiting an imbalance of the Th17/Treg ratio compared to that of
healthy controls [25]. Amazingly, the infusion of Th17 cells could provoke a depression-like
behavior in a mouse model with chronic restraint stresses [26]. Possibly, the development
of depressive symptoms also results from altered Th17 cell numbers. Similarly, major
depressive disorder patients may show an expansion of circulating Treg cells [27]. There
is growing interest in the specific role of Th17 cells and/or Treg cells in the pathogenesis
of CNS disorders and/or neurodegenerative diseases [28]. Th17 cells could guide the
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irregular inflammatory response including the excessive activation of microglia and/or
the recruitment of other immune cells to CNS for the progression of the disease [29]. For
example, peripheral Th17 cell-mediated inflammatory immune responses in the immune
structure of ALS patients might be confidently interrelated with the disease level and/or
progression [30]. However, the precise mechanisms of Th17 cells and/or Treg cells as well
as their linked cytokines in the neuropathology of those neurological disorders have not
been elucidated totally.
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Figure 1. A hypothetical schematic representation and overview of the pathogenesis of MAFLD
and various brain disorders including mental diseases and/or motor neuron diseases. Obesity,
inflammation, and/or oxidative stress could lead to the alteration of PI3K/AKT/mTOR signaling
following contribution to the imbalance of Th17/Treg ratio of immune cells, which might eventually
lead to the pathogenesis both of MAFLD and brain disorders. Note that several significant things
have been omitted for clarity.

3. PI3K/AKT/mTOR Signaling Pathway Involved in the Regulation of Th17/Treg
Balance of Various Diseases

Hepatic infiltration of Th17 cells might be critical for the NASH triggering and/or de-
velopment of liver fibrosis [31]. Therefore, the maturation of Th17 cells and the Th17/Treg
balance axis are major contributing factors to the pathogenesis of MAFLD as well as NASH.
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Regulation of Th17 cells or Treg cells may be regulated through the PI3K/AKT/mTOR
intracellular signaling pathway [32] (Figure 1). For example, programmed death-ligand
1 (PD-L1) is involved in regulating Th17/Treg cell balance in ulcerative colitis (UC) by
blocking the activation of the PI3K/AKT/mTOR signaling pathway [33]. In addition, Th17
differentiation may be closely related to the inflammatory response of synoviocytes through
PI3K/AKT/mTOR signaling pathway [34]. One of the microRNAs, miR-151-5p, could
balance Th17/Treg by modulating the PI3K/AKT/mTOR signaling pathway [35]. It has
also been shown that upregulation of miR-151-5p could alter the Th17/Treg ratio via the
activation of PI3K/AKT/mTOR signaling [36]. The PI3K/AKT/mTOR signaling pathway
is involved in fundamental cellular processes including apoptosis, metabolism, cycle, au-
tophagy, and survival to play a significant role in the homeostasis of various cells and/or
organs [37]. For example, the PI3K/AKT/mTOR pathway could be involved even in the
retrieval of ovarian function by changing the ratio of Th17/Tc17 and Th17/Treg cells [38].
Rapamycin-mediated blockage of mTOR activation may restrain T-cell proliferation for de-
creased Th17/Treg ratios [39]. Similarly, mTOR activation may be positively correlated with
the loss of Th17/Treg balance [40]. Th17/Treg balance could be modulated by regulating
the PI3K/AKT/mTOR signaling pathway in immune cells [41]. Consistently, the Treg/Th17
imbalance might be associated with the activation of PI3K/AKT/mTOR signaling in pe-
ripheral blood mononuclear cells [42]. In addition, the PI3K/AKT/mTOR signaling could
restore the Th17/Treg balance in chronic obstructive pulmonary disease [43]. Sarcoidosis
is a systemic granulomatous disease associated with the Treg cells paradigm, in which
PI3K/AKT/mTOR signaling is critical for the optimal Treg responses [44]. The imbalance
of Th17/Treg is a critical factor even in asthma pathogenesis, which could be improved by
the inhibition of the PI3K/AKT/mTOR pathway for airway protection [45]. The dynamic
equilibrium between Th17/Treg immune cells via the PI3K/AKT/mTOR pathway has
been shown at the maternal-fetal interface [46]. Modulation of Th17/Treg balance via the
PI3K/AKT/mTOR signaling could prevent cartilage and/or bone destruction [47]. An
imbalance of Th17/Treg has been found in patients with intracranial aneurysms, which
could be inhibited through suppression of the PI3K/AKT/mTOR and NFκB signaling [48].
High-fat and high-fructose diet could induce metabolic syndrome and NASH, which might
coincide with an increase in hepatic Th17 cells [49]. A high-fat diet may also exacerbate
depressive-like behavior [50]. In these ways, the PI3K/AKT/mTOR pathway involved in
the regulation of Th17/Treg balance might influence the pathogenesis of various diseases
including MAFLD. (Figure 2).
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Figure 2. Several modulator molecules linked to the PI3K/AKT/mTOR signaling pathway have been
shown. Example compounds from natural sources known to act on the AMPK/PI3K/AKT/mTOR
and/or autophagy-related signaling pathway are also shown. Reactive oxygen species (ROS), inflam-
mation, and/or autophagy might be all involved in the pathogenesis of MAFLD. Fecal microbiota
transplantation (FMT) could be effective against the progression of MAFLD. Arrowhead indicates
stimulation whereas the hammerhead shows inhibition. Note that several important activities such
as cytokine induction or anti-inflammatory reaction have been omitted for clarity. Abbreviation:
AMPK, adenosine monophosphate-activated protein kinase; mTOR, mammalian/mechanistic target
of rapamycin; PI3K, phosphoinositide-3 kinase; PKA, protein kinase A; PTEN, phosphatase and
tensin homolog deleted on chromosome 10.

4. Therapeutic Strategies for Patients with MAFLD and/or Various CNS Disorders

Some satisfying strategies have been recognized for patients with MAFLD. Emerging
evidence recommends that anti-diabetic medications could decrease fatty accumulation
and/or decline liver enzyme levels in MAFLD [51]. For example, metformin is a biguanide
anti-diabetic drug that has been utilized to treat patients with type 2 diabetes. Metformin
has been proven to have an outstanding therapeutic effect on MAFLD [52]. Metformin
could also inhibit the inflammatory reaction that can regulate Th17 cells and Treg cells
in a rheumatoid arthritis mouse model [53]. In addition, metformin has been shown
to have an anti-inflammatory property in a mouse model of inflammation-associated
tumors [54]. Additionally, metformin could ameliorate arthritic symptoms by suppressing
Th17 differentiation [55].

Dietary interventions have emerged as effective palliative strategies for MAFLD. For
example, studies have shown the benefit of antioxidants such as vitamin E in various
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common foods on fatty liver progression [56]. For another example, berberine could inhibit
the proliferation of Th17 cells and could also promote the differentiation of Treg cells via
the PI3K/AKT/mTOR signaling [57]. Hence, berberine has been widely used to treat
MAFLD [58]. Oxyberberine, a gut microbiota-mediated oxidative metabolite of berberine,
has been also identified as effective on MAFLD [59]. In addition, curcumin has effectively
alleviated colitis in mice with type 2 diabetes mellitus by restoring the homeostasis of the
Th17/Treg ratio and improving the composition of the intestinal microbiota [60]. Supple-
mentation of curcumin has an advantageous effect on liver findings, reduced serum liver
enzymes, total cholesterol, and body mass index (BMI) in participants with MAFLD [61].
Tetrahydrocurcumin could attenuate hepatic lipogenesis in an adenosine monophosphate-
activated protein kinase (AMPK)-dependent manner suggesting a potential treatment
for MAFLD [62]. Similarly, dihydrocurcumin could improve hepatocellular glucose up-
take by increasing the protein expression levels of PI3K/AKT [63]. Baicalin, an extract
from Scutellaria baicalensis Georgi, may play a beneficial role by mediating downstream
immune response pathways brought by oxidative stresses and/or inflammation, in which
PI3K/AKT/mTOR signaling might be a key factor associated with the remedial effects of
baicalin on MAFLD/NASH [64]. Disaccharide trehalose might provide structure-specific
effects on cellular energy production and hepatic fat accumulation, suggesting a health
potential for the treatment of MAFLD [65] (Figure 2). Amazingly, trehalose has been re-
vealed as an attractive candidate to prevent and modify the progression of Parkinson’s
disease [66].

Microbiota in a body may participate in the pathogenesis of MAFLD by regulating
metabolic pathways [67]. The progression of MAFLD is also closely related to some micro-
biota in the body. For example, porphyromonas gingivalis, the main pathogen for periodontal
disease, could participate in the development of MAFLD via the Th17/Treg imbalance in-
duced by disordered microbial metabolisms [68]. High-fat diet-related microbiota dysbiosis
might be responsible for a decreased number of Th17 cells [69]. An increased abundance of
Treg-inducing bacteria that could also stimulate the Treg activity in the colon, might in turn
down-regulate the inflammatory signals in the liver [70]. In general, targeting Treg cells
could act as a favorable prognostic pointer by modulating steatosis during the pathogenesis
of MAFLD and MAFLD-associated hepatocellular carcinoma [71]. Interestingly, trehalose
is vilified for its putative microbial effects, which are potent therapeutic actions of trehalose
without adversely affecting host microbial communities [72].

Some beneficial methods based on the renovation of gut microbiota conformation,
including probiotics and/or fecal microbiota transplantation (FMT), as well as targeted gut
microbiota-associated signaling pathways, might present novel visions into the treatment
for MAFLD patients [73]. Interestingly, FMT could also show anti-depressant activity [74].
Research on the microbiota-gut-brain axis in major depressive disorder is promising to
develop and/or progress novel treatment, which is currently accepted as an indispensable
part of the adjustment and/or the maintenance of homeostasis in systemic metabolism [75].
FMT might be also a possible intervention to alter the immunological response to ALS
and/or the disease development [76].

5. Future Perspectives

MAFLD has developed a main public health concern as its progression increases the
risks of multisystem morbidity and mortality. MAFLD is characterized by diffuse hepatic
alveolar steatosis and fat stored in liver lobules, with the exception of alcohol and/or other
certain liver-damaging factors including NASH [77]. It is well recognized that MAFLD
is a systemic disorder with variations in genetic background, metabolic characteristics,
dietary habits, lifestyles as well as environmental risks, which could altogether contribute
to the pathogenesis of MAFLD [78]. Therefore, extrahepatic complications of MAFLD may
include various psychological dysfunction, obstructive sleep apnea syndrome, extrahepatic
malignancies such as colorectal cancer, and/or polycystic ovarian syndrome [79]. In
particular, major depressive disorder may be highly associated with MAFLD, which might
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have complex pathogenic mechanisms [80]. The prevalence of MAFLD is about 50% among
people with depression [81]. Patients with MAFLD have a prevalence of about 18 % in
mental disorders [82]. It has been described that the brain volumes of white and gray
matter have been decreased in patients with MAFLD compared with those of control
subjects, which might be associated with a greater risk of depression in patients with
MAFLD [83]. Long-term psychological stress might play an imperative role in introducing
and/or arbitrating the occurrence of diseases [84]. Unfortunately, MAFLD and major
depressive disorder mediate and promote the progression of each other [85]. Consequently,
an increase in the occurrence of major depressive disorder is also an imperative public health
concern. MAFLD patients with major depressive disorder have a reduced response to the
typical care for MAFLD, involving predominantly lifestyle alterations [86]. Interestingly,
trehalose may have antidepressant-like properties [87] as well as anti-hepatic-steatosis
properties [88]. Hepatic steatosis is also a frequent finding in ALS [89]. Inflammations
and/or oxidative stresses have been supposed to be key factors for the pathogenesis of these
diseases [90]. Additionally, trehalose might be a valuable add-on therapy in combination
with other ALS treatment options to improve symptoms in early-stage of ALS [91]. On
the contrary, risperidone, a second-generation antipsychotic drug used for the treatment
of schizophrenia and/or major depressive disorder, may exacerbate MAFLD in obese
mice [92].

A number of studies have shown that an imbalance of Th17/Treg cells may signifi-
cantly contribute to the occurrence and/or progression of various inflammatory diseases
such as inflammatory bowel disease [93]. The imbalance might be also involved in neu-
rodegenerative pathology including multiple sclerosis [94]. Therefore, the balance between
Th17 and Treg cells as well as the related cytokines is crucial, which could be achieved
by the regulation of the PI3K/AKT/mTOR signaling pathway [95]. In addition, it has
been suggested a critical association between the PI3K/AKT/PTEN signaling pathway
and MAFLD [96]. As shown here, MAFLD connected with obesity might be also associated
with depression and anxiety-related behavior. This may be accompanied by astrocytic
and/or microglial metabolic alterations including higher oxygen consumption, suggesting
that the early stages of MAFLD might be related to diet-induced encephalopathy [97]. Not
only liver specialists, but also patients with MAFLD, should be conscious of increased risks
for various diseases including CNS disorders. Since many complications may potentially
occur across various organs including CNS, cooperative care with individual experts is also
essential for the good management of patients with MAFLD.

6. Conclusions

The Th17/Treg balance via the regulation of PI3K/AKT/mTOR signaling pathway
has been suggested to play important roles in the pathophysiology of MAFLD. Since
MAFLD is a systemic disorder with differences in genetic background and/or metabolic
characteristics, MAFLD may have various complications with CNS disorders including
several psychological dysfunctions. Therefore, cooperative care with medical and scientific
experts might be indispensable for the good management of patients with MAFLD.
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Abbreviations

ALS amyotrophic lateral sclerosis
AMP Adenosine monophosphate
AMPK AMP-activated protein kinase
BMI body mass index
CNS central nervous system
FMT fecal microbiota transplantation
NAFLD non-alcoholic fatty liver disease
MAFLD metabolic-associated fatty liver disease
NASH non-alcoholic steatohepatitis
mTOR mammalian/mechanistic target of rapamycin
PI3K phosphoinositide-3 kinase
PKA protein kinase A
PTEN phosphatase and tensin homologue deleted on chromosome 10
QOL quality of life
ROS reactive oxygen species
UC ulcerative colitis
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83. Filipović, B.; Marković, O.; Ðurić, V.; Filipović, B. Cognitive Changes and Brain Volume Reduction in Patients with Nonalcoholic
Fatty Liver Disease. Can. J. Gastroenterol. Hepatol. 2018, 2018, 9638797. [CrossRef] [PubMed]

84. Mizuno, M.; Siddique, K.; Baum, M.; Smith, S.A. Prenatal programming of hypertension induces sympathetic overactivity in
response to physical stress. Hypertension 2013, 61, 180–186. [CrossRef] [PubMed]

85. Macavei, B.; Baban, A.; Dumitrascu, D.L. Psychological factors associated with NAFLD/NASH: A systematic review. Eur. Rev.
Med. Pharmacol. Sci. 2016, 20, 5081–5097. [PubMed]

86. Tomeno, W.; Kawashima, K.; Yoneda, M.; Saito, S.; Ogawa, Y.; Honda, Y.; Kessoku, T.; Imajo, K.; Mawatari, H.; Fujita, K.; et al.
Non-alcoholic fatty liver disease comorbid with major depressive disorder: The pathological features and poor therapeutic
efficacy. J. Gastroenterol. Hepatol. 2015, 30, 1009–1014. [CrossRef] [PubMed]

87. Kara, N.Z.; Toker, L.; Agam, G.; Anderson, G.W.; Belmaker, R.H.; Einat, H. Trehalose induced antidepressant-like effects and
autophagy enhancement in mice. Psychopharmacology 2013, 229, 367–375. [CrossRef]
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