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Abstract: Microbiome-derived short chain fatty acids (SCFAs: acetate, propionate, and butyrate) and
bile acids (BAs: primary BAs and secondary BAs) widely influence liver metabolic inflammation,
immune responses, and carcinogenesis. In recent literature, the role of SCFAs and BAs in various
liver diseases has been discussed. SCFAs and BAs are two types of microbiome-derived metabolites
and they have been shown to have immunoregulatory ability in autoimmunity, inflammation, and
liver-cancer microcellular environments. SCFAs and BAs are dependent on dietary components.
The numerous regulatory processes in lymphocytes and non-immune cells that underpin both the
positive and harmful effects of microbial metabolites include variations in metabolic signaling and
epigenetic states. As a result, histone deacetylase (HDAC) inhibitors, SCFAs, and BAs, which are
powerful immunometabolism modulators, have been explored. BAs have also been shown to alter the
microbiome as well as adaptive and innate immune systems. We therefore emphasize the important
metabolites in liver disease for clinical therapeutic applications. A deep understanding of SCFAs and
Bas, as well as their molecular risk, could reveal more about certain liver-disease conditions.

Keywords: short-chain fatty acids; bile acids; liver therapies; metabolomics; metabolic discriminations;
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1. Introduction

The trillions of microorganisms that colonize our gastrointestinal (GI) tract are collec-
tively known as gut microbiota. These microbes are mutually linked to the functioning
of synergetic cellular metabolism and hence to the host’s medical conditions [1,2]. The
gut microbiota includes a unique diversity of non-mammalian microbial genes that are
required for the synthesis of many microbial molecules such as short-chain fatty acids
(SCFAs: acetate, propionate, and butyrate) and bile acids (BAs: primary Bas and, through
deconjugation, secondary BAs). These soluble mediators bridge the gap between host cells
and commensal bacteria and are required for energy metabolism, shaping the mucosal
immune system, and imbalance at the host interface [3,4]. The gut microbiome can be
altered through diet, drugs, time, and physiochemical processes. Analysis of intestinal
microbiota shows that specific anaerobic gut microbes are significantly required in allogenic
stem cell transplantation (SCT) [5,6].

The SCFAs of acetate, propionate, and butyrate are an important type of microbial
metabolite. According to the microbial fermentation process, SCFAs are generated in
the intestinal lumen through the human microbiota. Bacteroides spp. are linked to propi-
onate [7], and acetate synthesis [8]. There are two types of microbial fermentation process:
(1) fermentation of water-soluble dietary fibers (i.e., pectin, guar gum, and inulin) and
(2) fermentation of insoluble fibers (i.e., resistant starch). The complex microbial molecules
pass through the upper GI tract and are digested in the cecum and proximal colon under
an anaerobic environment that has maximum amounts of SCFAs [9]. Three SCFAs, acetate,
propionate, and butyrate are most prevalent in normally developing mouse microbial
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intestines. Furthermore, branched-chain fatty acids (BCFAs) such as valine, leucine, and
isoleucine) have been found in much lower amounts in rodent and human GI tracts [10,11].

In contrast to SCFAs and lactate that are also produced by the breakdown of carbo-
hydrates, BCFAs are produced by microbial fermentation. [12,13]. The effects of SCFAs
on epithelial cells have been explored and butyrate treatment of epithelial cells has been
shown to increase the production of IL-18 by GPR109a. SCFA-associated GPR43 (G-coupled
receptor 43) has also been shown to suppress insulin signaling activity, decrease fat accu-
mulation in adipose tissue, and improve energy homeostasis balancing [14]. SCFAs have
been implicated in various metabolic dysregulations in human and mice studies and SCFA-
associated metabolic phenotypic expression can control GI equilibrium. Gut homeostasis
and microbial communication in epithelial tissues, the immune system, Staphylococcus
epidermidis, and molecular mechanisms are activated by SCFAs via the liver feedback
mechanism [15,16].

The microbiota is involved in modulating homeostasis in the human gut. Bacteria in-
fluence the development and role of host immune cells, including T helper cells (interleukin
17A and TH17 cells). Both primary BAs and secondary BAs regulate host and immune
responses [17]. SCFAs are the main metabolites and might influence gut–liver crosstalk and
gut–brain function. SCFAs are mandatory for gut, body, and brain health.

Notably, in addition to food components, gut microbial bacteria can change host-
derived compounds such as primary and secondary BAs. When food is consumed, gall-
bladder stimulation causes an influx of primary liver-derived BAs into the duodenum,
which is responsible for emulsification of nutritional fats [18]. The majority of primary
BAs (cholic acid and chenoxycholic acid in humans and cholic acid, α-muricholic acid,
and β-muricholic acid in rodents) are generated in the liver and delivered to the liver
via the enterohepatic circulation; a lesser proportion is converted into secondary BAs by
gut microbiota alteration in the colon [17]. Both primary BAs and secondary BAs have
been shown to interact agonistically or antagonistically with a family of nuclear (FXR)
and G-protein-coupled receptors, collectively known as BA-activated receptors (BAR),
influencing cellular signaling as well as immunological response [19,20]. The secondary
BAs of 3-hydroxydeoxycholic acid have recently been found to promote regulatory T
cell differentiation via interaction with the farnesoid X receptor on dendritic cells (DCs),
indicating a possibility for novel therapies [21].

Therefore, the mechanisms of two significant families of microbial phenotypes in BAs
and SCFAs play lead roles in liver metabolism. SCFA and BA phenotypic expression in the
clinical domain will enhance diagnostic and therapeutic options.

2. SCFAs—Associated Metabolic Expression and Biomarker Modelling

The GI tract has a rich and condensed microbial environment, making it the sole
site of host–microbiota crosstalk. Metabolic disturbance of host–microbe and microbe–
microbe interactions has been linked to inflammatory illnesses (e.g., inflammatory bowel
disease and colitis-associated carcinogenesis [22]. To maintain the gut immune system,
microbial communities require a balance between pathogen protection and tolerance to
commensals and dietary antigens. As a result, the microbiome genome scale plays a
role in controlling the immunological response, including effects on intestinal epithelial
cells, activation of anti-inflammatory cells, neurological disorders, and reduction of the
inflammatory response [23].

New research has found that SCFAs have a variety of impacts on epithelial cells. Injec-
tion of SCFAs has been shown to enhance retinoic acid (RA) in intentional epithelial cells.
Vitamin A derivative compounds are formed via aldehyde dehydrogenase which is related
to signaling and growth of peripheral T-regs (pT-regs) during an immunosuppressive
response [24–26]. Furthermore, butyrate treatment of epithelial cells boosted IL-18 produc-
tion via a GPR109a-mediated pathway, promoting stomach homeostasis and defending
against colorectal carcinogenesis [27–29].
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In addition, binding of SCFAs to GPR41 and GPR43 increased the production of
antimicrobial factors such as RegIIIγ and β-defensins in IEC via increased mTOR and
STAT3 signaling, while animals lacking the receptors had a poor immunological response
to C. rodentium infection [30,31]. The regulation of antimicrobial molecules in epithelial cells
could lead to an increase in metabolic signaling information. Acetyl-CoA regulates genes
for plasma-cell differentiation and IgA antibody development. IgA is more important for
gut homeostasis maintenance [32]. Microbial bacteria-derived SCFAs are required for gut
homeostasis, mucosal integrity, and IgA production [33,34].

3. Modulatory Role of SCFAs

Propionate and butyrate regulate gene expression by directly inhibiting histone
deacetylases (HDACs). HDAC is responsible for transcriptional gene silencing. HDAC
inhibitors in liver disease are key to exploiting specific therapeutic strategies. The second
route for SCFA actions is signaling via G-protein-coupled receptors (GPR: GPR41, GPR43,
and GPR109A) [1]. In addition, GPR43 expression was found in immune cells as well
as in the GI tract. The presence of GPR43 and GPR109A in immune-system neutrophils,
macrophages, and dendritic cells (DCs) suggests that SCFAs play a role in immunological
reactions [35,36].

The anti-inflammatory activity of GPR43 has been discovered in colitis and arthritic
mice [26]. SCFAs have been shown to improve body weight by activating the expression of
GPR41 and GRP109A [37]. GPR43 and GPR41 have a 43% amino acid sequence identity
and may bind to acetate, propionate, or butyrate [38]. Butyrate has been the most efficient
activator for GPR109A, which is an individual state in the human microbiome, whereas
propionate is more discriminating for GPR41 and GPR43 [39]. It is worthwhile investigating
remedies that target these receptors or their signaling pathways to impact SCFAs for liver
therapeutic interventions and metabolic disease.

4. Liver Disease

The impact of SCFAs on liver cirrhosis has been studied in both animals and humans.
Butyrate induces T-reg differentiation. It could play a role in the control of inflamma-
tion. Butyrate provides energy and maintains the integrity of colonocytes, improving
barrier function [40]. Acetate and butyrate supplementation has protected against nicotine-
induced excess hepatic steatosis, and Western-style-diet-induced non-alcoholic steatohep-
atitis (NASH) [41,42]. In human studies, SCFA levels were observed to be decreased
in non-obese non-alcoholic fatty liver disease (NAFLD) patients compared to non-obese
healthy individuals [43]. Table 1 shows the metabolite-producing flora for SCFAs and BAs.

In addition, SCFAs help to inhibit the progress of NAFLD in a variety of ways: Firstly,
SCFAs have important impacts on fatty-acid metabolism and visceral adipose tissue (VAT),
both of which are important in the development of NAFLD. Excessive VAT accumulation
has been linked to an increase in the release of free fatty acids (FFAs) into the liver [44].
Because they activate NF-kB, FFAs are thought to play a major role in the development
of NAFLD [45]. Furthermore, VAT generates an imbalance of pro-inflammatory and anti-
inflammatory adipokines, leading to systemic inflammation, including liver inflammation.
Acetate could inhibit hormone-sensitive lipase (HSL) phosphorylation in human multipo-
tent adipose-tissue-produced stem adipocytes in GPR [46].

Secondly, through modulating GI motility, SCFAs may increase energy yield, improve
nutritional absorption, and accelerate hepatic lipogenesis. The molecular metabolism for
this is that activation of GPR41 and GPR43 stimulates the production of 5-hydroxytryptamine
(5-HT), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1), which may block intestinal
transit and decrease gastric emptying, diet intake, and intestinal motility [47].
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Table 1. Human gut microbiota produces SCFAs and bile acid metabolites.

Class Metabolites 3D Structure Fabricating Flora

SCFAs

Acetic acid
(Acetate)
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Figure 1. Gut microbiota and host. The role of SCFAs in human microbiome communication in
healthy liver and disease. This dysbiosis is associated with fluctuations in bacterial metabolites
such as SCFAs and BAs. GPR41/43, IL-10, and GLP-1 control the metabolic activities of fatty acid
oxidation, lipid storage, insulin production, and acetyl-CoA synthesis.
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Acetate, propionate, and butyrate have been shown to alleviate hepatic steatosis
by activating AMP-activated protein kinase, expressing a fatty-acid oxidation gene, and
inhibiting macrophage proinflammatory activation [49]. SCFAs also play an epigenetic
function in NAFLD development. As histone deacetylase inhibitors, propionate, acetate,
and butyrate play an important role in NAFLD by decreasing chromatin-bound acetyl
groups [50,51]. The multi-omics data sets and clinic databases must be linked, as this will
set the tone for future systems.

5. Conclusions

In conclusion, SCFA and BA metabolites promote human liver health and research
into them allows a deeper understanding of the role of host–microbiota networks. HDAC
inhibitors are new anti-cancer drugs in apoptosis and liver cancer cell-cycle arrest. We
believe that SCFAs, Bas, and HDAC biotransformation offer us opportunities to devise
therapeutic interventions for liver metabolic diseases, including fatty liver, hepatitis, and
cancers. In the future, metabolic compounds such as SCFAs and BAs will receive significant
attention in clinical and translational research.
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