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Abstract: Machine learning methods allow the prediction of material properties, potentially using
only the elemental composition of a molecule or compound, without the knowledge of molecular
or crystalline structures. Herein, a composition-based machine learning prediction of the material
properties of V–Cr–Ti alloys is demonstrated. Our machine-learning-based prediction of the stability
of the V–Cr–Ti alloys is qualitatively consistent with the composition-dependent experimental data
of the ductile–brittle transition temperature and swelling. Furthermore, our computational results
suggest the existence of a composition region, Cr+Ti ~ 60 wt.%, at a significantly low ductile–brittle
transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than
10 wt.% in conventional V–Cr–Ti alloys. Machine-learning-based numerical stability prediction is
useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as
high-entropy alloys, to develop materials for nuclear fusion reactors.

Keywords: materials informatics; machine learning; nuclear fusion; nuclear fission; reactor materials;
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1. Introduction

The design or screening of alloys for specific applications has conventionally relied on
a series of experiments and first-principle calculations. However, conducting experiments
for a wide range of elemental compositions, particularly for higher-than-binary alloys, is
extremely laborious. Furthermore, the first-principle calculations, such as density func-
tional theory (DFT) and molecular dynamics simulations, require high computational costs
and knowledge of the crystalline or molecular structure, such as the spatial configuration
of atoms. The machine learning method allows the experience-based prediction of material
properties, potentially only using the atomic composition of the molecule or compound
without the knowledge of the molecular or crystalline structure, by utilizing the existing
thorough database of the DFT calculation results for training. In the field of structural mate-
rials for nuclear fusion and fission reactors, the most common plane-wave DFT calculations
are suitable for inorganic solids, particularly metal compounds.

The V–Cr–Ti alloy is a promising material for the various structural components
of nuclear power plants, such as blanket, first wall, and divertor components in fusion
reactors, as well as structural materials in fast breeder reactors and high-temperature
gas-cooled reactors, owing to its high-temperature mechanical strength, excellent thermal
stress factor, superior low-temperature ductility, high resistance to neutron irradiation,
low induced activation, and compatibility with the liquid-Li environment [1–6]. Herein,
composition-based machine learning prediction of the material properties of the V–Cr–Ti
alloys is demonstrated as a case study. To the best of our knowledge, this study is the first
attempt to apply the machine learning method to the V-based material systems.

2. Methods

An open-source code ElemNet was used to predict the stability of the V–Cr–Ti alloys
based on their elemental composition. The ElemNet model is a 17-layered, fully con-
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nected deep neural network developed for the prediction of formation energy (enthalpy)
using only elemental composition [7,8]. The neural network architecture of ElemNet has
been summarized in the literature [7]. A rectified linear unit was used as a neuronal ac-
tivation function. The tuned hyperparameters of the model were as follows: number of
layers: 17; momentum: 0.9; dropouts: 0.7, 0.8, and 0.9; and the optimization algorithm:
stochastic gradient descent [7]. The model is trained on the enthalpies of formation of
341,000 compounds with unique elemental compositions, determined by first-principle
DFT calculations available in the Open Quantum Materials Database [9]. The error analysis
for the ElemNet indicated well-performed deep learning with a mean absolute error of
0.042 eV/atom in a 10-fold cross-validation [8]. ElemNet utilizes artificial intelligence to
capture the essential chemistry for predicting material properties by automatically learning
the chemical interactions and similarities between different elements. The ElemNet code
was operated in the energy-prediction mode based on the pretrained model in a Python 3.7
environment with extension modules, including NumPy 1.21 and TensorFlow 1.14, and
considering the elemental composition of the metal alloy as the only input.

3. Results and Discussion

Figure 1 presents the correlation between the enthalpy of the formation of the V–Cr–Ti
alloys, computed by the ElemNet machine learning model and DFT calculations registered
in the Open Quantum Materials Database. Only four DFT data points are available for
ternary V–Cr–Ti compounds in the Open Quantum Materials Database as of March 2023,
reflecting the difficulty of using first-principle calculations for multicomponent alloys and
indicating the necessity of machine-learning-based prediction. Despite the small number
of datasets, an excellent agreement between the machine learning prediction and the DFT
values is observed in Figure 1, with a mean absolute error of 0.015 eV/atom.
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Figure 1. Correlation between the enthalpy of formation of V–Cr–Ti alloys computed by the ElemNet
machine learning model, ∆Hf, ML, and density functional theory calculations registered in the Open
Quantum Materials Database, ∆Hf, DFT.

The enthalpy of formation, ∆Hf, represents the stability of a material in the opposite
direction of its value. The negative (i.e., sign-reversed) enthalpy of formation, −∆Hf,
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therefore directly represents the stability. Figure 2 shows the computed −∆Hf of the V–Cr–
Ti alloys as a function of the Cr content at a fixed Ti content of 4 wt.%. In addition, a set of
experimental data of the ductile–brittle transition temperature (DBTT) of the V–Cr–Ti alloys
with a Ti content of 4 wt.% as a function of the Cr content are plotted in Figure 2 [10]. Brittle
failure can occur at temperatures below the DBTT. Therefore, low DBTTs are preferred to be
used as structural materials. In other words, a low DBTT increases the applicable operating
temperature range because the structural material needs to be used at a temperature higher
than its DBTT. Generally, the Cr+Ti content in the composition of the V–Cr–Ti alloys is
maintained below 10 wt.% to avoid entering the high-DBTT region [1–6,11]. As shown in
Figure 2, the computational result of −∆Hf reproduced well the trend of the experimental
DBTT data. In the Cr content region of less than 20 wt.%, an increase in the Cr content of
the V–Cr–Ti alloys leads to an increase in the DBTT [10,12,13]. Experimentally, this trend is
attributed to the effect of solid-solution strengthening and Ti-based precipitates such as
Ti-oxycarbonitrides, induced by the inclusion of Cr [6,10,12,13]. In addition, an increase in
the computed −∆Hf can be attributed to the entropic stabilization effect of the elemental
mixture. It may be an interesting study in future to correlate these effects in order to obtain
a deeper understanding. Intuitively, the difference in energy related to the material stability
corresponds to the difference in the transition temperature as ∆E ~ nkB∆Ttrans, where E
represents the potential energy of a molecule, n is the number of orders around unity, kB is
the Boltzmann constant, and Ttrans is the generalized transition temperature of the molecule.
In this context, the relationship observed in Figure 2, ∆(−∆Hf) = 5kB∆TDBT, where TDBT is
the DBTT, is considered to be positioned within a feasible range.
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Figure 2. Computed negative enthalpy of formation (line) and experimental ductile–brittle transition
temperature (dots) [10] of V–Cr–Ti alloys as a function of the Cr content at a Ti content of 4 wt.%.

As an extension of Figure 2, Figure 3 demonstrates the computed ∆Hf of the V–Cr–
Ti alloys as a function of the Cr content at Ti contents of 4, 8, and 16 wt.%. The ∆Hf
becomes minimum in the intermediate region of Cr content, 40–60 wt.%, for alloys with
a low Ti content, such as 4 and 8 wt.%. Interestingly, an unstable regime appears around
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the intermediate region of the Cr content at a higher Ti content of 16 wt.%, where DBTT
decreases. This is further discussed based on the computational results, as shown in
Figure 4.
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Figure 3. Computed enthalpy of formation of V–Cr–Ti alloys as a function of the Cr content at the Ti
content of 4, 8, and 16 wt.%.
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Figure 4. Computed enthalpy of formation of V–Cr–Ti alloys as a function of the Cr content for the
weight ratio of Cr:Ti = 1:0, 2:1, 1:1, 1:2, and 0:1.

Figure 4 presents the computed ∆Hf values of the V–Cr–Ti alloys as a function of
the Cr content at weight ratios of Cr:Ti = 1:0, 2:1, 1:1, 1:2, and 0:1. The computational
results do not successfully reproduce the series of experimental DBTT data reported in [11],
where the DBTT is evidently low and high when the Cr+Ti content is lesser and higher
than 10 wt.%, respectively. Nevertheless, our results were qualitatively consistent with
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the experimental data for a monotonic increase in DBTT below 25 wt.%. In addition, our
results were consistent with the trend observed in the experimental swelling data reported
in [14], confirming the higher stability of the Ti content for the region below 20 wt.% with
topping out. Related to the result shown in Figure 3, Figure 4 demonstrates a decrease in
∆Hf up to a Cr+Ti content of approximately 40 wt.%; however, ∆Hf increases and reaches
a maximum at a Cr+Ti content of approximately 60 wt.%, particularly for alloys with a
high Ti content. This result contrasts with the conventional status, where only the low
Cr+Ti content regime, <10 wt.%, in V–Cr–Ti alloys was considered for applications [1–6].
This prediction of the significantly high ∆Hf and expectedly low DBTT in the intermediate
region of the Cr+Ti content can be utilized for the design of structural materials.

4. Conclusions

In this study, the composition-based machine learning prediction of the material
properties of V–Cr–Ti alloys was demonstrated as a case study. The machine-learning-
based prediction of the stability of the V–Cr–Ti alloys was qualitatively consistent with
the experimental data of DBTT and swelling as a function of the elemental composition.
In addition, our computational results suggested the existence of a composition region
with high Cr and Ti contents (Cr+Ti ~ 60 wt.%) and significantly low DBTTs. This outcome
contrasts with the low Cr+Ti content of less than 10 wt.% in conventional V–Cr–Ti alloys.
Thus, the machine-learning-based numerical stability prediction may be useful for the
design and analysis of metal alloys, particularly for multicomponent high-entropy alloys,
to develop materials for nuclear fusion and fission reactors.
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