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Abstract: Plasma-facing materials (PFMs) in the ITER divertor will be exposed to severe conditions,
including exposure to transient heat loads from edge-localized modes (ELMs) and to plasma particles
and neutrons. Tungsten is the material chosen as PEM for the ITER divertor. In previous tests, bubble
formation in ITER-grade tungsten was detected when exposed to fusion relevant conditions. For
this study, ITER-grade tungsten was exposed to simultaneous ELM-like transient heat loads and
D/He (6%) plasma in the linear plasma device PSI-2. Bubble formation was then investigated via
SEM micrographs and FIB cuts. It was found that for exposure to 100.000 laser pulses of 0.6 GWm 2
absorbed power density (P,ps), only small bubbles in the nanometer range were formed close to the
surface. After increasing P,ps to 0.8 and 1.0 GWm ™2, the size of the bubbles went up to about 1 um
in size and were deeper below the surface. Increasing the plasma fluence had an even larger effect,
more than doubling bubble density and increasing bubble size to up to 2 um in diameter. When using
deuterium-only plasma, the samples showed no bubble formation and reduced cracking, showing
such bubble formation is caused by exposure to helium plasma.
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1. Introduction

Plasma-facing materials (PFMs) in the ITER divertor will be exposed to severe con-
ditions. At full DT operation, these will include quasi-stationary and slow transient heat
loads of 10-20 MWm 2 [1,2], as well as particle loads from plasma particles in the order of
1026 m~2 per pulse and 10°°-10%! m~2 during the divertor lifetime [3]; and from neutrons
released from the fusion reaction generating an estimated 0.5 displacements per atom
(dpa) [4]. Additionally, transient thermal loads from instabilities such as edge-localized
modes (ELMs) will affect PFMs with power densities of up to 1 GWm ™2 in pulses of ap-
proximately 0.5 ms, with over 10° type I ELMs currently being expected to affect the ITER
divertor during its lifetime.

Tungsten was selected as PFM for the ITER divertor in 2013 due to its favorable
material properties, including a high melting point, high thermal conductivity, low tritium
retention and low erosion rate (and other references) [5-9]. These make tungsten the most
optimal candidate material for divertor PFMs. In spite of that, under such harsh conditions
as in the ITER divertor, some challenges could still arise. One of the main issues in using
tungsten as divertor material is its high atomic number (Z), which makes its cooling factor
in the plasma core several times higher than for lower Z materials. Due to this fact, the
maximum tolerable W concentration in the core plasma to allow for the burn conditions to
be achievable is in the range of several 105 [10].

ELM-like thermal shocks have been shown to cause significant surface roughening,
cracking, recrystallization, localized melting and material erosion [11-16]. When exposed
simultaneously to thermal shocks and plasma loads some synergistic effects are observed,
including worsened surface melting and cracking, embrittlement, as well as tungsten fuzz
formation and bubble formation [17-25].
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Helium nanobubbles have been observed when tungsten is exposed to helium
plasma [23,25]. The formation of larges bubbles of up to 1 um in tungsten when exposed
to both, plasma and ELM-like heat loads, has been evidenced in similar experiments per-
formed in the linear plasma generator PSI-2 [19,20], as well as in the linear divertor plasma
simulator NAGDIS-II [26]. For the formation of such bubbles to occur, helium particles
must have an energy of 6 eV or higher, corresponding to the surface barrier potential energy
for helium particles to penetrate into tungsten. At the same time, the surface temperature
of the material has to be higher than the recrystallization temperature, to facilitate the
migration and coalescence of the bubbles [26]. Larger bubbles can considerably affect
the material performance of tungsten PFMs, decreasing thermal conductivity, increasing
tritium retention and accelerating material erosion and tungsten dust formation. This
makes it vital to study the formation of these bubbles in order to understand the factors
that affect their formation and growth, and how they can influence material properties and
behavior under fusion-relevant conditions.

2. Experimental

In all tests, samples of ITER-grade tungsten provided by PLANSEE AG and character-
ized by having needle-like grains transversal to the surface were used. This microstructure
is preferred for the ITER divertor due to its favorable cracking behavior when compared
to other microstructures [14]. 5 mm thick samples with a geometry adapted for the PSI-2
holder (top surface of 10 mm x 10 mm, bottom surface of 10 mm X 12 mm and a 1 mm
on two sides) were obtained by EDM cutting from a tungsten rod and then mechanically
polished to a mirror finish with a mean arithmetic roughness of about 0.1 pm, using
one different sample per treatment.

These samples were then exposed to ITER ELM-like loads in the linear plasma device
PSI-2 at Forschungszentrum Jiilich by simultaneously exposing them to stationary plasma
and transient heat loads [27]. A deuterium plasma with 6% helium was generated by an arc
discharge between a heated LaBg cathode and a molybdenum anode. This gas mixture
was chosen in order to simulate the expected plasma mixture in ITER and other future
fusion reactors [28]. Plasma particles had an energy of approximately 35 eV and samples
were exposed to a total plasma fluence of 3.6 x 10 m~? for the normal fluence tests and
5.9 x 10% m~2 for the high fluence test (see Table 1).

Table 1. Summary of the plasma and thermal shock treatments applied to ITER-grade tungsten
samples and the resulting average arithmetic roughness (R,) of the surface.

Sample A B C D E
P,ps (GWm~2) 0.6 0.8 1.0 0.8 0.8
Fur (MWs—1/2) 13 18 22 18 18
Flux (m~2s71) 3.2 x 104 3.2 x 102 3.2 x 102 5.5 x 102 3.2 x 104
Fluence (m~2) 36 x 102  36x10% 36x105  59x10%® 3.6 x 10%

Gas D/He (6%) D/He (6%) D/He (6%) D/He (6%) D

Ra (um) 25.7 495 335 47.3 2.27

A Nd:YAG laser with a wavelength of 1064 nm was used to generate the thermal
shocks on the samples. 10° laser pulses were applied to each sample with a frequency of
10 Hz, a duration of 0.5 ms per pulse and with absorbed power densities (P,,s) of 0.6, 0.8
and 1.0 GWm 2. See Table 1 for a summary of all the treatments applied to the samples,
including Py, heat flux factor (Fyr), plasma flux, plasma fluence, gas mixture used and
arithmetic average roughness (R,).

A base temperature of 700 °C was used in all cases. This is higher than the ductile-
brittle transition temperature (DBTT) of most tungsten materials and still several hundred
degrees below its recrystallization temperature of 1100-1400 °C [29-31]. Exposing samples
at a temperature above the DBTT of the material is of importance, as exposing cold tungsten
to high heat flux loads will result in premature, brittle cracking [32].
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3. Results and Discussion

SEM images of the laser-affected spot of all samples exposed to D/He (6%) (see Table 1)
can be seen in Figure 1. Cracking behavior remains similar in all samples, despite the
change in P, with all samples showing extensive cracking and surface roughening.
On sample B, exposed to 0.8 GWm 2, some areas inside the laser spot remained free of
large cracks. However, samples A and C, tested with lower and higher P, respectively,
showed more extensive cracking, leading to the conclusion that the initial conditions of the
samples might have varied slightly (e.g., surface smoothness, microstructure and residual
stresses), leading to a different cracking threshold. Another possibility is that experimental
conditions, mainly plasma flux, could have had fluctuations during the experiment, leading
to this cracking behavior.

Figure 1. SEM micrographs of the whole laser-affected spot of all samples exposed to D/He (6%)
plasma. Samples were simultaneously exposed to 10° laser pulses with a P, of (A) 0.6 GWm™2,
(B) 0.8 GWm 2, (C) 1.0 GWm ™2 and (D) 0.8 GWm™2. Sample D was exposed to a higher plasma
fluence than samples A, B and C.

It also might be that the lower surface temperature during the thermal shock events
in sample A means that its behavior is less ductile than for sample B. At higher P, the
energy deposited on the surface might then be so high that cracking occurs despite a higher
ductility. Such behavior has been described previously on tungsten exposed to thermal
shocks generated by an electron beam device [33].

Sample D, exposed to a higher plasma fluence, formed a crack network throughout
the laser exposed area, in contrast to sample B. This shows either the effects of hydro-



J. Nucl. Eng. 2023, 4

207

gen/helium embrittlement, or the effect the formation of the bubbles have on the heat
conductivity on the surface, which in turn lead to increased cracking of the material.

At higher magnifications (Figure 2), when exposed to 0.8 GWm™2 or higher P,
localized melting on the sample occurs, which produces the rounded, smooth structures
that can be seen in the SEM images. The average surface temperature in the laser spot
was measured with an infrared camera in samples exposed to the same conditions, and it
was found that average temperature increased to 2200 °C during the 0.8 GWm ™2 thermal
shocks [19]. Such analyses, however, were not continued, as they cannot detect the large
temperature variations along the laser spot surface, as evidenced by the melted areas. Such
melting could pose an issue for the performance of a fusion reactor in that the ejection of
melt droplets has been identified as one of the main mechanisms of material erosion [15].
The melting threshold for tungsten, between 0.6 and 0.8 GWm ™2 also agrees with previous
experiments [34], although this clearly depends on the initial conditions of the material, in
particular base temperature.

Figure 2. Close-up of the laser-affected area of all samples exposed to D/He (6%) plasma. Samples
were simultaneously exposed to 10° laser pulses with a P,y of (A) 0.6 GWm™2, (B) 0.8 GWm 2,
(C) 1.0 GWm™2 and (D) 0.8 GWm™2. Sample D was exposed to a higher plasma fluence than
samples A, B and C.

The unmelted areas of the surface of the samples also clearly show the effects of bubble
formation, as they are all pockmarked by pores from helium exposure. Samples A and B
show nanometer-sized bubbles, while bubbles in sample C are in the range of a few
hundreds of nanometers, showing a strong acceleration in bubble size increase after Py,
surpasses 0.8 GWm 2. Plasma fluence seems to have an even larger effect on bubble size,
as sample D, exposed to higher fluence, showed the formation of micron-sized bubbles,
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even if it was exposed to a lower P, than sample C. If the ITER divertor reaches surface
temperatures high enough to allow for the formation of helium bubbles, even larger bubbles
might form, severely deteriorating the material properties, as a single full-power pulse in
ITER is expected to cause a plasma fluence on the divertor of 1026 m~—2 [3].

The FIB cuts in Figure 3 show how the as-received material shows no sign of bubble
formation. After exposure, sample A indeed only formed bubbles near the surface. The
surface temperature in sample A did not reach the temperature necessary for the diffusion
and coalescence of helium bubbles. As temperature increases due to the higher energy
deposited by the transient pulses, the tungsten bonds are weakened, and helium bubbles
can more easily coalesce and migrate deeper into the material [26]. This is demonstrated in
samples B, C and D, where bubbles are found as deep as the FIB cuts could be performed,
about 15 pm. Formed bubbles are not only deeper in these samples than in sample A, they
are also significantly larger, ranging from a few hundreds of nanometers in sample B to up
to 1-2 um in samples C and D.

Figure 3. FIB cuts of the laser-affected area of all samples exposed to D/He(6%) plasma. Samples
were simultaneously exposed to 10° laser pulses with a Py, of (A) 0.6 GWm ™2, (B) 0.8 GWm 2,
(C) 1.0 GWm™2, (D) 0.8 GWm™2 and of an as-received sample. Sample D was exposed to a higher
plasma fluence than samples A, B and C.
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The FIB cuts in samples B, C and D were performed on the cusps of one of the melt
droplets, as these droplets are generally protruding upwards, a position that is favorable for
performing FIB cuts. In such protruding areas of the material, its heat dissipation capability
is degraded. Therefore, either melting or annealing, which has observed previously even
at 1077 °C [35], could explain why no bubbles can be seen in the first few micrometers
in samples B and C. However, as seen above in Figure 2, they do form in the surface.
Nevertheless, the accelerated formation and growth when exposed to a higher fluence is
again evident in sample D. Bubble density more than doubled from sample B to sample
D. Bubbles occupied a 0.9% of the FIB cross-section area in sample B and 2% of the area
for sample D.

SEM images and a FIB cut of sample E, which was exposed to deuterium plasma,
without helium, can be seen in Figure 4. In this case, the sample had only a few isolated
cracks and the center of the laser spot remained without visible cracks. Neither melting nor
bubble formation was observed in this case, and roughness (see Table 1) was much lower
than for the other samples. This is, first of all, an indication that deuterium has no effect
on bubble formation in tungsten, as has been observed also in tungsten exposed to only
helium plasma [26,36]. And secondly, it shows that deuterium has a much lower synergistic
effect on the deterioration of the material properties than helium does. The higher impact of
helium on material properties could, at least partly, be caused by the bubble formation and
their effect on the thermal conductivity and heat dissipation capacity of the material. This,
in turn, leads to a larger temperature gradient between the laser spot and the surrounding
material, causing higher stresses due to the expansion of the high-temperature material
being restricted by the colder surrounding material [8] and a higher surface temperature in
the laser affected area.

Figure 4. SEM images of the laser spot, close-up and FIB cut of sample E, which was exposed to
10° laser pulses with a P,ps of 0.8 GWm ™2 and D plasma.
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4. Conclusions

e  The objective of this work was to study the formation of bubbles in ITER-grade
tungsten to understand the factors that cause it and influence their formation, as they
could potentially have an effect on the performance of divertor PFCs in fusion reactors.

e It was shown that at 700 °C base temperature, an exposure to transient heat loads of
up to to 0.6 GWm ™2 causes only nanometer-sized bubble on the surface of the material.
Once P, is increased, the higher surface temperature allows bubbles to migrate and
coalesce, causing the formation of larger bubbles deeper into the surface.

e  The effect of a higher plasma fluence was even larger. When plasma fluence was
increased from 3.6 x 102> m~2 to 5.9 x 10%° m~2 the bubble density and size grew,
forming bubbles of up to 1-2 um in diameter. Bubbles occupied a 0.9% of the FIB
cross-section area in sample B and 2% of the area for sample D.

e  When exposing the samples to deuterium-only plasma, with no helium, no bubbles
were formed. This means, thus, that bubble formation is caused exclusively by expo-
sure to helium plasma. Furthermore, melting and cracking behavior were significantly
worse in the samples exposed to combined D/He (6%) than in the one exposed to
deuterium-only plasma. This evidences the loss in heat dissipation on the surface of
the material and the degradation of material properties.

e Alloys and other advanced concepts for plasma-facing materials for the divertor in
future fusion reactors are being developed to solve some issues they are expected to
face. Materials that are more resistant to neutron irradiation, cracking, recrystallization,
oxidation in case of a loss-of-coolant accident (LOCA) and the improvement of the joint
between PFM and cooling tube are being developed [37—41]. As of yet, no material
has been developed specifically to solve the issue of bubble formation.

e  The effect that bubble formation could potentially have on the performance and
lifetime of a fusion reactor such as ITER remains. To assess this issue, its influence on
the thermal conductivity, hardness, erosion and deuterium retention of the material
should be studied. Additionally, the bubble formation behavior of tungsten alloys and
new PFM concepts should be studied.
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