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Abstract: This work illustrates the application of the fourth-order comprehensive sensitivity analysis
methodology for nonlinear systems (abbreviated as “4th-CASAM-N”), which enables the efficient
computation of exactly determined 1st-, 2nd-, 3rd-, and 4th-order functional derivatives of results
produced by computational models with respect to the model’s parameters. Results produced by
computational models are called model “responses” and the respective functional derivatives are
called “sensitivities” (with respect) to model parameters. The qualifier “comprehensive” indicates
that the 4th-CASAM-N methodology enables the exact and efficient computation not only of response
sensitivities with respect to customary model parameters (including computational input data,
correlations, initial and/or boundary conditions) but also with respect to imprecisely known material
boundaries, as would be caused by manufacturing tolerances. The 4th-CASAM-N enables the hitherto
very difficult, if not intractable, exact computation of all of the 1st-, 2nd-, 3rd-, and 4th-order response
sensitivities for large-scale systems involving many parameters, as usually encountered in practice.
A paradigm model that describes nonlinear heat conduction through a material has been chosen to
illustrate the application of the 4th-CASAM-N methodology, as this model enables the derivation of
tractable closed-form analytical expressions of representative 1st-, 2nd-, 3rd-, and 4th-order response
sensitivities while largely avoiding side-tracking algebraic manipulations. The responses chosen for
this paradigm model include not only physically measurable quantities but also a synthetic response
designed to illustrate the enormous possible reduction in the number of computation when using the
4th-CASAM-N (rather than other methods) for computing response sensitivities.

Keywords: fourth-order adjoint sensitivity analysis methodology; efficient computation of exact
sensitivities; first-order, second-order, third-order, fourth-order response sensitivities; nonlinear
heat conduction

1. Introduction

The accompanying Part I [1] has presented the mathematical framework of the “fourth-
order comprehensive sensitivity analysis methodology for nonlinear systems” (abbreviated
as “4th-CASAM-N”) methodology, which enables the most efficient computation of exactly
determined expressions for (all of) the 1st-, 2nd-, 3rd-, and 4th-order response sensitivities.
The 4th-CASAM-N is uniquely suited for the computation of sensitivities for large-scale sys-
tems involving many parameters: the larger the number of model parameters, the more ef-
ficient the 4th-CASAM-N. The principles underlying the application of the 4th-CASAM-N
will be illustrated in this work by performing a fourth-order sensitivity analysis of a
paradigm nonlinear heat conduction model, which enables the tractable computation of
closed-form analytical expressions for representative sensitivities. A second-order adjoint
sensitivity analysis of limited-scope has been performed on this illustrative model in [2,3]
but the domain was considered to be perfectly well known, so that sensitivities to uncertain
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boundaries (such as would be caused by manufacturing tolerances) were not addressed, as
the general theory for addressing such uncertain boundaries had not yet been developed
(these theoretical capabilities were first developed in the accompanying Part I [1]). The
system responses considered include the medium’s temperature and thermal conductivity,
which are physically measurable. In addition, this work also illustrates the enormous
computational advantages that could be gained by taking advantage of particularities of
the system/model under consideration, by considering a synthetically constructed model
response, namely the square of the thermal conductivity, which is related to responses of
interest (temperature, thermal conductivity) but which is not directly measurable. This
synthetic response will be demonstrated to have only a finite number of non-zero sensi-
tivities, as opposed to the temperature and thermal conductivity responses, which have
infinitely many sensitivities. Therefore, computing the sensitivities of this synthetic re-
sponse and subsequently obtaining the sensitivities of the responses of physical interest
(namely the temperature and/or thermal conductivity) from the sensitivities of the syn-
thetic response offers enormous computational advantages by comparison to computing
directly the infinitely many sensitivities of the temperature and/or thermal conductivity.

This work is structured as follows: Section 2 presents the mathematical formula-
tion of a simple nonlinear heat conduction model, which is characterized by uncertain
(i.e., imprecisely known) model parameters and physical boundaries (as would arise from
manufacturing tolerances). In Sections 3.1–3.4 of Section 3, the principles of applying the
4th-CASAM-N methodology are illustrated by presenting representative computations of
1st-, 2nd-, 3rd- and 4th-order response sensitivities. The discussion presented in Section 4
highlights the salient features of applying the 4th-CASAM-N methodology.

2. Illustrative Model: Nonlinear Heat Conduction through a Slab

To illustrate the main features of the 4th-CASAM-N, the illustrative model should
represent an actual nonlinear physical system, yet be sufficiently simple so that the math-
ematical derivations should highlight (rather than obscure) the concepts underlying the
4th-CASAM-N. A model that fulfills these considerations is the following simple nonlinear
model for the temperature distribution, T(x), within a heated slab of homogeneous material
of thickness `:

d
dx

[
k(T)

dT(x)
dx

]
+ Q = 0, 0 < x < `, (1)

dT
dx

= 0, at x = 0, (2)

T(x) = 0, at x = `. (3)

The thermal conductivity, k(T), is considered to depend linearly on the temperature,
having the following functional form:

k(T) = k0(1 + βT), (4)

where k0
[
Wm−1C−1] = k(T = 0) and β

[
C−1] are experimentally measured quantities

subject to uncertainties. As indicated by Equations (1)–(3), the slab is considered to be
heated by a constant internal heat source of strength Q

[
Wm−3]. The left side of the slab,

considered to be located at x = 0, is considered to be insulated (for simplicity). The
right side of the slab, considered to be located at x = `, is kept at a constant temperature,
considered to be zero degrees, for simplicity.

A typical model response of interest would be the temperature inside the material, as
measured by thermocouples placed at one (or several) location(s) denoted generically as xr,
0 < xr < `. Such a response is mathematically represented as follows:

Tr , T(xr) =

`∫
0

T(x)δ(x− xr)dx, 0 < xr < `, (5)
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where δ(x− xr) denotes the customary Dirac delta-functional. Another typical model
response of interest is the slab’s conductivity at a generic location xr, 0 < xr < `. Such a
response will be denoted as kr , k[T(xr)] and is mathematically represented as follows:

kr ,

`∫
0

k[T(x)]δ(x− xr)dx =

`∫
0

k0(1 + βT)δ(x− xr)dx, 0 < xr < `. (6)

In summary, the imprecisely known parameters that characterize the heat conductivity
model described in the foregoing are the quantities Q, k0, β, the location xr of the response
and the slab thickness `. These model parameters are considered to be components of the
column vector α , (α1, α2, α3, α4, α5)

† defined as follows:

α , (α1, α2, α3, α4, α5)
† , (Q, k0,β, xr, `)†, (7)

with known nominal (or mean) values α0 ≡
(

Q0, k0
0,β0, x0

r , `0
)†

. The dagger will be used
throughout this work to denote “transposition.” The model parameters, α, are considered
to be afflicted by uncertainties, so they can vary from their nominal values α0 by amounts
represented by the components of the “vector of variations”, δα , α−α0, which is defined
as follows:

δα , (δQ, δk0, δβ, δxr, δ`)† (8)

In practice, the variations δQ, δk0, δβ, δxr, δ` are expressed in terms of the standard
deviations that quantify the uncertainties in the respective model parameters. Such un-
certainties arise because the mean values of Q, q, k0,β and xr are estimated based on
measurements, while the geometrical dimension ` is subject to manufacturing tolerances.

The expression of the temperature distribution that satisfies Equations (1)–(3) can be
obtained by using the Kirchoff transformation:

U(x) ,
T∫

0

k(T′)
k0

dT′ = T(x) +
β

2
T2(x), (9)

which implies that
dU
dT

=
k(T)

k0
,

dT
dx

=
dT
dU

dU
dx

=
k0

k(T)
dU
dx

. (10)

Introducing the results obtained in Equation (10) into Equations (1)–(3) yields the
following system of equations for U(x):

k0
d2U
dx2 + Q = 0, 0 < x < `, (11)

dU(x)
dx

= 0, at x = 0, (12)

U(x) = 0, at x = `. (13)

Solving the system of Equations (11)–(13) yields the following expression for U(x):

U(x) =
Q

2k0

(
`2 − x2

)
> 0. (14)

It follows from the results obtained in Equations (9) and (14) that:

T2(x) =
2
β
[U(x)− T(x)]; T(x) =

1
β

[
−1 +

√
1 + 2βU(x)

]
. (15)
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Inserting the result obtained in Equation (15) into Equation (5) yields the following
closed-form expression for the response Tr(α):

Tr(α) =
1
β

[
−1 +

√
1 +

βQ
k0

(`2 − x2
r )

]
. (16)

Inserting the result obtained in Equation (15) into Equation (6) yields the following
closed-form expression for the response kr(α):

kr(α) =
[
k2

0 + k0βQ
(
`2 − x2

r

)]1/2
. (17)

At the nominal parameter values, the nominal values of the responses T0
r , Tr

(
α0)

and k0
r , kr

(
α0), respectively, are denoted as follows:

T0
r , Tr

(
α0
)
=

{
1
β

[
−1 +

√
1 +

βQ
k0

(`2 − x2
r )

]}
α0

, (18)

and

k0
r , kr

(
α0
)
=

{[
k2

0 + k0βQ
(
`2 − x2

r

)]1/2
}

α0
. (19)

The notation {}α0 , which appears in Equations (18) and (19), will be used in this
work to indicate that the quantity within the respective braces is to be evaluated at the
nominal values of the parameters, and implicitly, at the nominal value of the respective
state function(s).

The closed-form analytical expression for the state function T(x) provided in Equation (15)
is not available in practice. Consequently, the closed-form analytical expressions for
response kr provided in Equation (17) are not available in practice, either. In practice, the
model’s state functions and responses need to be computed numerically.

3. Illustrative Application of the 4th-CASAM-N to the Nonlinear Conduction Model

The concepts underlying the 4th-CASAM-N will be illustrated in this section by
considering the nonlinear heat conduction model presented in Section 2, above. The
derivation of the exact expressions of the first-order sensitivities of the temperature response
with respect to the model’s parameters will be presented in Sections 3.1–3.4 illustrate the
derivation of the exact expressions of representative 2nd-, 3rd-, and 4th-order sensitivities
of the temperature response with respect to selected model parameters.

3.1. First-Order Response Sensitivities

The 1st-order sensitivities of the temperature and thermal conductivity response
defined in Equations (5) and (6), respectively, will be derived in this section by applying the
principles of the 4th-CASAM-N methodology. Both of these responses are linear functions
of the state function (temperature). In addition, therefore, this section will also present the
illustrative application of the 4th-CASAM-N methodology to derive the expressions of the
1st-order sensitivities of an illustrative model response, which is a nonlinear function of the
state function (temperature).

3.1.1. First-Order Sensitivities of the Forward State Function (Temperature)

The first-order sensitivities of the response Tr(α) with respect to parameter variations
δα, are obtained by determining the first-order Gateaux- (G-)differential δTr

(
T0;α0; δT; δα

)
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of Tr(α) at the nominal parameter values. Thus, applying the definition of the G-differential
to Equation (5) yields the following relation:

δTr
(
T0;α0; δT; δα

)
,

[
d
dε

`0+εδ`∫
0

[
T0(x) + εδT(x)

]
δ
[
x−

(
x0

r + εδxr
)]

dx

]
ε=0

,
{

δTr
(
α0; δα

)}
dir +

{
δTr
(
α0; δT

)}
ind,

(20)

where the direct-effect term
{

δTr
(
T0;α0; δα

)}
dir depends only on parameter variations

and is defined as follows:

{
δTr

(
T0;α0; δα

)}
dir

, −(δxr)


`∫

0

T(x)δ′(x− xr)dx


α0

, (21)

and where the indirect-effect term
{

δTr
(
α0; δT

)}
ind depends only on variations δT(x) in

the state function T(x) and is defined as follows:

{
δTr

(
α0; δT

)}
ind

,


`∫

0

δT(x)δ(x− xr)dx


α0

. (22)

The direct-effect term defined by Equation (21) can be evaluated immediately by
using the expression provided in Equation (15) for the state function T(x). In practice,
the direct-effect term defined by Equation (21) is computed numerically, by using the
numerically computed values for T(x). On the other hand, the indirect-effect term defined
by Equation (22) can be evaluated only after having determined the function δT(x), which
is the solution of the G-differentiated model comprising Equations (1)–(3). Applying the
definition of the G-differential to Equations (1)–(3) yields the following system:{

d
dε

d
dx

[(
k0

0 + εδk0
)
+
(
k0

0 + εδk0
)(
β0 + εδβ

)(
T0 + εδT

)] d(T0+εδT)
dx

}
ε=0

+
{

d
dε

(
Q0 + εδQ

)}
ε=0

= 0, 0 < x < `0;
(23)

{
d
dε

d
(
T0 + εδT

)
dx

}
ε=0

= 0, at x = 0; (24)

{
d
dε

[
T0
(
`0 + εδ`

)
+ εδT

]}
ε=0

= 0, at x = `0. (25)

Performing the differentiations with respect to ε in Equations (23)–(25) and setting
ε = 0 in the resulting expressions yields the following system of equations:{

d2

dx2 [k(T)δT(x)]
}

α0
=
{

s(1)V (T;α; δα)
}
α0

, 0 < x < `0; (26)

d[δT(x)]
dx

= 0, at x = 0; (27)

δT(x) + (δ`)

{
dT(x)

dx

}
α0

= 0, at x = `0 ; (28)

where:

s(1)V (T;α; δα) , −(δQ) + (δk0)
Q
k0
− (δβ)k0

d
dx

[
T(x)

dT(x)
dx

]
. (29)

The system of equations shown in Equations (26)–(28) will be called the first-level Vari-
ational Sensitivity System (1st-LVSS). Rather than solving the 1st-LVSS repeatedly, to obtain
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the function δT(x) for all parameter variations, it is more advantageous computationally to
derive an alternative expression for the indirect-effect term defined by Equation (22), which
does not depend on δT(x). This alternative expression for the indirect-effect term will be
obtained by using the first-level adjoint sensitivity system (1st-LASS), which is adjoint to
the 1st-LVSS defined by Equations (26)–(28). The Hilbert space appropriate for constructing
the 1st-LASS will be denoted as H1(Ω) ≡ L2(Ω) and comprises all square integrable (in the
sense of Lebesgue) functions a(x) defined on the domain x ∈ Ω ≡ [0, `] and endowed with
the following inner product for two functions a1(x) ∈ H1(Ω) and a2(x) ∈ H1(Ω):

〈a1(x), a2(x)〉1 ,


`∫

0

a1(x) a2(x)dx


α0

. (30)

Presently forming the inner product of Equation (26) with a yet undefined function
ψ(1)(x) ∈ H1(Ω) and integrating the resulting equations twice by parts to transfer the
differential operations from δT(x) to ψ(1)(x) yields the following relation:{∫̀

0
ψ(1)(x) d2

dx2 [k(T)δT(x)]dx

}
α0

=

{∫̀
0
ψ(1)(x)s(1)V (T;α; δα)dx

}
α0

=

{
ψ(1)(x) d

dx
[
k
(
T0)δT(x)

]
− δT(x)k

(
T0) dψ(1)(x)

dx

}x=`

x=0

+

{∫̀
0

δT(x)
[

k(T) d2ψ(1)(x)
dx2

]
dx

}
α0

.

(31)

The last term on the right-side of Equation (31) will represent the indirect-effect
term defined in Equation (22) and the unknown values of δT(x) will be eliminated from
Equation (31) by defining the following first-level adjoint sensitivity system (1st-LASS) for
the 1st-level adjoint function a(1)(x):{

k(T)
d2ψ(1)(x)

dx2

}
α0

= {δ(x− xr)}α0 , 0 < x < `0 , (32)

ψ(1)(x) = 0, at x = `0; (33)

dψ(1)(x)
dx

= 0, at x = 0. (34)

Using the relations that constitute the 1st-LVSS and the 1st-LASS together with
Equation (22) in Equation (31) transforms the latter relation into the following form:

{
δTr

(
T0;α0; δT

)}
ind

=


`∫

0

ψ(1)(x)s(1)V (T;α; δα)dx


α0

− (δ`)

{[
k(T)

dT(x)
dx

dψ(1)(x)
dx

]
x=`

}
α0

. (35)

Adding the expressions obtained in Equations (21) and (35) yields the following expression
for the total 1st-order G-differential δTr

(
T0;α0; δT; δα

)
:

δTr
(
T0; α0; δT; δα

)
= −(δxr)

{∫̀
0

T(x)δ′(x− xr)dx

}
α0

+

{∫̀
0
ψ(1)(x)s(1)V (T;α; δα)dx

}
α0

−(δ`)
{[

k(T) dT(x)
dx

da(1)(x)
dx

]
x=`

}
α0

, ∂Tr
∂Q (δQ) + ∂Tr

∂k0
(δk0) +

∂Tr
∂β (δβ) +

∂Tr
∂xr

(δxr) +
∂Tr
∂` (δ`).

(36)

Replacing in Equation (36) the expression for s(1)V (T;α; δα) from Equation (29) and identi-
fying the quantities that multiply the respective parameter variations yields the following
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expressions for the 1st-order sensitivities of the temperature response with respect to the
model parameters:

∂Tr

∂Q
= −


`∫

0

ψ(1)(x)dx


α0

, (37)

∂Tr

∂k0
=

Q
k0

`∫
0

ψ(1)(x)dx


α0

, (38)

∂Tr

∂β
= −

k0

`∫
0

ψ(1)(x)
d

dx

[
T(x)

dT(x)
dx

]
dx


α0

, (39)

∂Tr

∂xr
= −


`∫

0

T(x)δ′(x− xr)dx


α0

=


`∫

0

T(x)
dx

δ(x− xr)dx


α0

, (40)

∂Tr

∂`
= −

{[
k(T)

dT(x)
dx

dψ(1)(x)
dx

]
x=`

}
α0

. (41)

After solving the 1st-LASS to determine the 1st-level adjoint function ψ(1)(x), the ex-
pressions obtained in Equations (37)–(41) indicate that all of the 1st-order response sensitiv-
ities can be computed exactly and efficiently, using just quadrature (integrations) formulas.

It is important to note that the 1st-LASS is independent of parameter variations.
Solving the 1st-LASS yields the following 1st- level adjoint function ψ(1)(x):

ψ(1)(x) =
{

1
kr(α)

[(x− xr)H(x− xr)− `+ xr]

}
α0

. (42)

where H(x) is the customary Heaviside unit-step functional, defined as H(x) = 0 i f x < 0;
H(x) = 1 i f x ≥ 0. Using the expressions obtained in Equations (16) and (42) in
Equations (37)–(41) and carrying out the respective integrations yields the following de-
tailed, exact expressions for the 1st-order sensitivities of the temperature response Tr(α)
with respect to the model parameters:

∂Tr(α)

∂Q
=

`2 − x2
r

2kr(α)
, (43)

∂Tr(α)

∂k0
=

Q
k0

x2
r − `2

2kr(α)
, (44)

∂Tr(α)

∂β
=

1
β2 −

1
β

1
2kr(α)

[
2

k0

β
+ Q

(
`2 − x2

r

)]
, (45)

∂Tr(α)

∂xr
=
−Qxr

kr(α)
, (46)

∂Tr(α)

∂`
=

Q`

kr(α)
. (47)

All of the expressions of the 1st-order sensitivities presented in Equations (43)–(47) are
to be evaluated at the respective nominal parameter values but the indicator {}α0 has been
omitted, for simplicity.

3.1.2. First-Order Sensitivities of a Linear Response (Thermal Conductivity)

In addition to the temperature, another important response is the thermal conductivity
of the material in which heat is being transported, i.e., the function kr(α) at a generic
location xr, 0 < xr < `. In this illustrative model, the thermal conductivity is a linear
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function of the temperature, so the sensitivity analysis of the thermal conductivity serves to
illustrate the application of the 4th-CASAM-N to a linear model response. The first-order
sensitivities of the response kr(α) with respect to parameter variations δα are obtained
by determining the first-order Gateaux- (G-) differential δkr

(
T0;α0; δT; δα

)
of kr(α) at

the nominal parameter values. Thus, applying the definition of the G-differential to
Equation (6) yields the following relation:

δkr
(
T0;α0; δT; δα

)
,

{
d
dε

`0+εδ`∫
0

(
k0

0 + εδk0
)[

1 +
(
β0 + εδβ

)(
T0 + εδT

)]
×δ
[
x−

(
x0

r + εδxr
)]

dx
}

ε=0 ,
{

δkr
(
T0;α0; δα

)}
dir +

{
δkr
(
T0;α0; δT

)}
ind,

(48)

where the direct-effect term
{

δkr
(
T0;α0; δα

)}
dir depends only on parameter variations and

is defined as follows:

{
δkr
(
T0;α0; δα

)}
dir , (δk0)

{∫̀
0
[1 + βT(x)]δ(x− xr)dx

}
α0

+(δβ)

{
k0
∫̀
0

T(x)δ(x− xr)dx

}
α0

− (δxr)

{
k0
∫̀
0
[1 + βT(x)]δ′(x− xr)dx

}
α0

,

(49)

and where the indirect-effect term
{

δkr
(
T0;α0; δT

)}
ind depends only on variations δT(x)

in the state function T(x) and is defined as follows:

{
δkr

(
T0;α0; δT

)}
ind

,

k0β

`∫
0

δT(x)δ(x− xr)dx


α0

. (50)

The direct-effect term defined by Equation (49) can be evaluated immediately by
replacing the expression provided in Equation (15) for the state function T(x). In practice,
the direct-effect term defined by Equation (49) is computed numerically, by using the
numerically computed values for T(x). The indirect-effect term defined by Equation (50)
can be evaluated only after having determined the function δT(x), which is the solution
of the 1st-LVSS represented by Equations (26)–(28). However, the indirect-effect term is
obtainable by simply multiplying the expression obtained in Equation (35) by the product
of parameters k0β. As all of the operations for obtaining the 1st-order sensitivities of kr(α)
are essentially duplications of the mathematical operations performed in Section 3.1.1, the
respective details will be omitted; only the expressions of the 1st-order sensitivities of kr(α)
are presented below:

∂kr

∂Q
= −


`∫

0

ϕ(1)(x)dx


α0

(51)

∂kr

∂k0
=


`∫

0

[1 + βT(x)]δ(x− xr)dx


α0

+

Q
k0

`∫
0

ϕ(1)(x)dx


α0

(52)

∂kr

∂β
=

k0

`∫
0

T(x)δ(x− xr)dx


α0

− k0

`∫
0

ϕ(1)(x)
d

dx

[
T(x)

dT(x)
dx

]
dx (53)

∂kr

∂xr
= −

k0

`∫
0

[1 + βT(x)]δ′(x− xr)dx


α0

(54)

∂kr

∂`
= −

{[
k(T)

dT(x)
dx

dϕ(1)(x)
dx

]
x=`

}
α0

(55)
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The 1st-level adjoint function ϕ(1)(x), which appears in the expressions presented in
Equations (51)–(55) is the solution of the following first-level adjoint sensitivity system
(1st-LASS): {

k(T)
d2ϕ(1)(x)

dx2

}
α0

= {k0βδ(x− xr)}α0 , 0 < x < `0 , (56)

ϕ(1)(x) = 0, at x = `0; (57)

dϕ(1)(x)
dx

= 0, at x = 0. (58)

The explicit expression of the 1st-level adjoint function ϕ(1)(x), obtained by solving
Equations (56)–(58), is as follows:

ϕ(1)(x) =
{

k0β

k[T(xr)]
[(x− xr)H(x− xr)− `+ xr]

}
α0

. (59)

Introducing in Equations (51)–(55) the right side of Equation (59) and performing the
various integrations yields the closed-form expressions for the 1st-order sensitivities of
kr(α).

If the results for the 1st-order sensitivities of Tr(α), i.e., the results produced by
numerically computing the right sides of Equations (37)–(41) or Equations (43)–(47), are
available, then the sensitivities of kr(α) can be computed directly from the sensitivities of
Tr(α) and vice versa, by using the G-differential of Equation (4), which reads as follows:

δk(T) = δk0(1 + βT) + (δβ)k0T + k0β(δT). (60)

In particular, the relation provided in Equation (60) indicates that the sensitivities of
kr(α) are related to the sensitivities of Tr(α) as follows:

∂kr(α)

∂Q
= k0β

∂Tr(α)

∂Q
= k0β

`2 − x2
r

2kr(α)
, (61)

∂kr(α)

∂k0
= [1 + βTr(α)] + k0β

∂Tr(α)

∂k0
=

k0

kr(α)
+ βQ

`2 − x2
r

2kr(α)
, (62)

∂kr(α)

∂β
= k0Tr(α) + k0β

∂Tr(α)

∂β
=

k0Q
(
`2 − x2

r
)

2kr(α)
, (63)

∂kr(α)

∂xr
= k0β

∂Tr(α)

∂xr
= − k0βQxr

kr(α)
, (64)

∂kr

∂`
= k0β

∂Tr

∂`
=

k0βQ`

kr(α)
. (65)

All of the expressions of the 1st-order sensitivities presented in Equations (61)–(65) are
to be evaluated at the respective nominal parameter values but the indicator {}α0 has been
omitted, for simplicity.

3.1.3. First-Order Sensitivities of a Nonlinear Response

A paradigm example of a nonlinear response is the square of the thermal conductivity,
namely k2

r (α). The remainder of this subsection will present the sensitivity analysis of this
response, which will be denoted as R(T,α) , k2

r (α), because it also demonstrates (as will
be shown in the remainder of this subsection) that particularly chosen responses offer
significant computational advantages over performing the direct sensitivity analysis of the
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response of actual interest, which would be kr(α). The expression defining the response
R(T,α) , k2

r (α) is as follows:

R(T,α) =
`∫

0

[k0(1 + βT)]2δ(x− xr)dx = k2
0 + k0βQ

(
`2 − x2

r

)
, 0 < xr < `. (66)

It is evident from the closed-form expression provided in Equation (66) that R(T,α) ,
k2

r (α) is a polynomial of fifth-order in the model parameters, so all of the sensitivities of
order higher than five will vanish identically. In contradistinction to the vanishing of the
sensitivities of order higher than five for the response R(T,α) , k2

r (α), the sensitivities
of the temperature response, Tr(α), and—consequently—of the thermal conductivity re-
sponse, kr(α), do not vanish identically, but exist for all orders, because of the fractional
power (square root) involved in their expressions, cf. Equations (16) and (17). For the
1st-order sensitivities, a single adjoint computation is required per response to obtain
the 1st-level adjoint function and subsequently compute efficiently and exactly all of the
response’s 1st-order sensitivities, regardless of the number of model parameters, so if only
the 1st-order sensitivities of Tr(α) and/or kr(α), they would be most advantageously com-
puted by using the respective 1st-LASS. If, however, the high-order sensitivities of Tr(α)
and/or kr(α) are also of interest, then it is considerably more advantageous to compute
the higher-order sensitivities of R(T,α) , k2

r (α), by applying the 4th-CASAM-N, and
subsequently determine the high-order sensitivities of Tr(α) and/or kr(α) through their
relations to the sensitivities of R(T,α) , k2

r (α), which are as follows:

(i) First-order variations:

δR(T,α) = 2kr(α)δkr(α) ; ⇒ δkr(α) = δR(T,α)/2kr(α); (67)

(ii) Second-order variations:

δ2R(T,α) = 2[δkr(α)] 2 + 2kr(α)δ2kr(α);

⇒ δ2kr(α) =
δ2R(T,α)−2[δkr(α)] 2

2kr(α)

(68)

(iii) Third-order variations:

δ3R(T,α) = 4δkr(α)δ2kr(α) + 2δkr(α)δ2kr(α) + 2kr(α)δ3kr(α);

⇒ δ3kr(α) =
δ3R(T,α)−4δkr(α)δ2kr(α)−2δkr(α)δ2kr(α)

2kr(α)
;

(69)

(iv) Fourth-order variations:

δ4R(T,α) = 6
[
δ2kr(α)

]2
+ 8δkr(α)δ3kr(α) + 2kr(α)δ4kr(α);

⇒ δ4kr(α) =
δ4R(T,α)−6[δ2kr(α)]

2−8δkr(α)δ3kr(α)

2kr(α)
;

(70)

(v) Fifth-order variations:

δ5R(T,α) = 20δ2kr(α)δ3kr(α) + 10δkr(α)δ4kr(α) + 2kr(α)δ5kr(α);

⇒ δ5kr(α) =
δ5R(T,α)−20δ2kr(α)δ3kr(α)−10δkr(α)δ4kr(α)

2kr(α)

(71)

(vi) Sixth-order variations:

0 = 20
[
δ3kr(α)

]2
+ 30δ2kr(α)δ4kr(α) + 12δkr(α)δ5kr(α) + 2kr(α)δ6kr(α);

⇒ δ6kr(α) = −
20[δ3kr(α)]

2
+30δ2kr(α)δ4kr(α)+12δkr(α)δ5kr(α)

2kr(α)
;

(72)
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The G-differentiation of the relation provided in Equation (72) would provide the
means for obtaining the expression of δ6kr(α), and so on. Thus, if the variations δ5R(T,α),
n = 1, . . . , 5, are known, then the expressions of the variations δnkr(α) can be obtained
successively for n = 1, 2, . . ., for arbitrarily large n.

The exact expressions of the variations δnR(T,α), n = 1, . . . , 4, can be obtained most
efficiently by applying the 4th-CASAM-N developed by Cacuci [1], as will be exempli-
fied in the remainder of this work. Thus, the total first-order sensitivity of R(T,α) with
respect to parameter variations δα, is provided by the first-order Gateaux- (G-)differential
δR
(
T0;α0; δT; δα

)
, which is obtained by applying the definition of the G-differential to

Equation (66), which yields the following expression:

δR
(
T0;α0; δT; δα

)
,

{
d
dε

`0+εδ`∫
0

(
k0

0 + εδk0
)2
[
1 +

(
β0 + εδβ

)(
T0 + εδT

)]2

×δ
[
x−

(
x0

r + εδxr
)]

dx
}

ε=0 ,
{

δR
(
T0;α0; δα

)}
dir +

{
δR
(
T0;α0; δT

)}
ind.

(73)

The direct-effect term
{

δkr
(
T0;α0; δα

)}
dir, defined in Equation (73), depends only on

parameter variations and has the following expression:

{
δR
(
T0;α0; δα

)}
dir , (δk0)

{
2k0
∫̀
0
[1 + βT(x)]2δ(x− xr)dx

}
α0

+(δβ)

{
2k2

0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−(δxr)

{
k2

0

`0∫
0
[1 + βT(x)]2δ′(x− xr)dx

}
α0

.

(74)

The indirect-effect term
{

δR
(
T0;α0; δT

)}
ind, defined in Equation (73), depends only

on variations δT(x) in the state function T(x) and has the following expression:

{
δR
(

T0;α0; δT
)}

ind
,

2k2
0β

`∫
0

[1 + βT(x)]δT(x)δ(x− xr)dx


α0

. (75)

The direct-effect term defined by Equation (74) can be evaluated immediately by
replacing the expression provided in Equation (15) for the state function T(x); in practice,
this direct-effect term is computed numerically, by using the numerically computed values
for T(x).

The indirect-effect term defined by Equation (75) can be evaluated only after hav-
ing determined the function δT(x), which is the solution of the 1st-LVSS represented by
Equations (26)–(28). The alternative expression for the indirect-effect term will be obtained
in terms of a first-level adjoint sensitivity system (1st-LASS), which is adjoint to the 1st-
LVSS, has a source term that corresponds to Equation (75), and is constructed by applying
the principles of the 4th-CASAM-N just as was conducted in Section 3.1.1, namely:

1. Form the inner product of Equation (26) with a yet undefined function a(1)(x) ∈
H1(Ω) and integrate the resulting equations twice by parts to transfer the differential
operations from δT(x) to a(1)(x), to obtain the following relation:
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{∫̀
0

a(1)(x) d2

dx2 [k(T)δT(x)]dx

}
α0

=

{∫̀
0

a(1)(x)s(1)V (T;α; δα)dx

}
α0

=

{
a(1)(x) d

dx
[
k
(
T0)δT(x)

]
− δT(x)k

(
T0) da(1)(x)

dx

}x=`

x=0

+

{∫̀
0

δT(x)
[

k(T) d2a(1)(x)
dx2

]
dx

}
α0

.

(76)

2. Using the relations that constitute the 1st-LVSS and the 1st-LASS together with
Equation (75) in Equation (76) transforms the latter relation into the following form:

{
δR
(
T0;α0; δT

)}
ind =

{∫̀
0

a(1)(x)s(1)V (T;α; δα)dx

}
α0

−(δ`)
{[

k(T) dT(x)
dx

da(1)(x)
dx

]
x=`

}
α0

,

(77)

where the 1st-level adjoint function a(1)(x) is the solution of the following 1st-LASS:

d2a(1)(x)
dx2 = {2k0βδ(x− xr)}α0 , 0 < x < `0; (78)

a(1)(x) = 0, at x = `0; (79)

da(1)(x)
dx

= 0, at x = 0. (80)

Adding the expressions obtained in Equations (74) and (77) yields the following
expression for the total 1st-order G-differential δR

(
T0;α0; δT; δα

)
:

δR
(
T0; α0; δT; δα

)
= (δk0)

{
2k0
∫̀
0
[1 + βT(x)]2δ(x− xr)dx

}
α0

+(δβ)

{
2k2

0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−(δxr)

{
k2

0

`0∫
0
[1 + βT(x)]2δ′(x− xr)dx

}
α0

+

{∫̀
0

a(1)(x)s(1)V (T;α; δα)dx

}
α0

− (δ`)

{[
k(T) dT(x)

dx
da(1)(x)

dx

]
x=`

}
α0

, ∂R
∂Q (δQ) + ∂R

∂k0
(δk0) +

∂R
∂β (δβ) +

∂R
∂xr

(δxr) +
∂R
∂` (δ`).

(81)

Replacing in Equation (81) the expression for s(1)V (T;α; δα) from Equation (29) and
identifying the quantities that multiply the respective parameter variations yields the
following expressions for the 1st-order sensitivities of the response R(T;α) with respect to
the model parameters:

∂R
∂Q

= −


`∫

0

a(1)(x)dx


α0

, (82)

∂R
∂k0

=

2k0

`∫
0

[1 + βT(x)]2δ(x− xr)dx


α0

+

Q
k0

`∫
0

a(1)(x)dx


α0

, (83)
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∂R
∂β =

{
2k2

0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−
{

k0
∫̀
0

a(1)(x) d
dx

[
T(x) dT(x)

dx

]
dx

}
α0

=

{
2k2

0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−
{

k0
2

∫̀
0

T2(x) d2a(1)(x)
dx2 dx

}
α0

,

(84)

∂R
∂xr

= −

k2
0

`∫
0

[1 + βT(x)]2δ′(x− xr)dx


α0

, (85)

∂R
∂`

= −
{[

k(T)
dT(x)

dx
da(1)(x)

dx

]
x=`

}
α0

. (86)

The expression in the second equality on the right side of Equation (84) has been
obtained after integrating twice by parts the second term on the right side of this equation
and using the corresponding boundary conditions for the functions T(x) and a(1)(x).

Solving Equations (78)–(80) yields the following explicit expression for the 1st-level
adjoint function a(1)(x):

a(1)(x) = {2k0β[(x− xr)H(x− xr)− `+ xr]}α0 . (87)

Using the expressions for a(1)(x) and T(x) in Equations (82)–(86) yields the following
closed-form expressions for the 1st-order sensitivities of the response R(T;α) with respect
to the model parameters:

∂R
∂Q

= k0β
(
`2 − x2

r

)
, (88)

∂R
∂k0

= 2k0 + βQ
(
`2 − x2

r

)
, (89)

∂R
∂β

= k0Q
(
`2 − x2

r

)
, (90)

∂R
∂xr

= −2k0βQxr, (91)

∂R
∂`

= 2k0βQ`. (92)

The results obtained in Equations (88)–(92) can be used in conjunction with the results
obtained in Equations (61)–(65) for the mutual verification that the relation provided in
Equation (67) can indeed be used to compute the sensitivities of when the sensitivities of
are known and vice versa, as the following equalities demonstrate:

∂kr(α)

∂Q
=

1
2kr(α)

∂R
∂Q

= k0β
`2 − x2

r
2kr(α)

, (93)

∂kr(α)

∂k0
=

1
2kr(α)

∂R
∂k0

=
k0

kr(α)
+
βQ
(
`2 − x2

r
)

2kr(α)
, (94)

∂kr(α)

∂β
=

1
2kr(α)

∂R
∂β

=
k0Q

(
`2 − x2

r
)

2kr(α)
, (95)

∂kr(α)

∂xr
=

1
2kr(α)

∂R
∂xr

= − k0βQxr

kr(α)
, (96)

∂kr

∂`
=

1
2kr(α)

∂R
∂`

=
k0βQ`

kr(α)
. (97)
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3.2. Second-Order Response Sensitivities

This section will illustrate the application of the principles of the 4th-CASAM-N
methodology to derive exact expressions for representative 2nd-order sensitivities corre-
sponding to the 1st-order sensitivities obtained in Equations (82)–(86). Each of the 1st-order
sensitivities can be considered to represent a “model response.” Consequently, by applying
the principles outlined in Section 3.1, above, to each of the 1st-order sensitivities would
generate the corresponding 2nd-order sensitivities by using a single (2nd-level) adjoint
function. As the illustrative nonlinear heat conduction paradigm model has five (uncertain)
parameters, a total of five 2nd-level adjoint functions will be needed to generate all of
the 25 second-order sensitivities. The mixed 2nd-order sensitivities will be generated
twice, using distinct adjoint functions; hence, the symmetries inherent to the 2nd-order
sensitivities provide an intrinsic verification mechanism for ensuring that the 2nd-level
adjoint functions are accurately computed. Of course, it is not necessary to generate all of
the 2nd-order sensitivities: only the ones deemed to be important (based on the relative
magnitudes of the 1st-order sensitivities) would need to be generated. These concepts will
be illustrated in this and subsequent sections.

As indicated in Equation (82), the expression of the 1st-order sensitivity ∂R/∂Q in-
volves only the first-level adjoint function a(1)(x). Consequently, the principles of the
4th-CASAM-N methodology indicate that the 2nd-order sensitivities corresponding to
∂R/∂Q will be determined in terms of a 2nd-level adjoint function, which will comprise a
single component that will correspond to the variational function δa(1)(x). The expression
of the 1st-order sensitivity ∂R/∂xr obtained in Equation (85) involves only the forward
state function T(x). Consequently, the principles of the 4th-CASAM-N methodology indi-
cate that the 2nd-order sensitivities corresponding to ∂R/∂xr will be determined in terms
of a 2nd-level adjoint function, which will (also) comprise a single component that will
correspond to the variational function δT(x). On the other hand, the expressions obtained
in Equations (83), (84) and (86) indicate that those 1st-order sensitivities involve both
a(1)(x) and T(x). Consequently, the principles of the 4th-CASAM-N methodology indicate
that the 2nd-order sensitivities corresponding to the 1st-order sensitivities obtained in
Equations (83), (84) and (86) will involve 2nd-level adjoint functions which will each com-
prise two-components (as opposed to a single component); one component corresponding
to δT(x) and the second component corresponding to δa(1)(x).

Section 3.2.1 will illustrate the application of the 4th-CASAM-N methodology to deter-
mine the exact expressions of the 2nd-order sensitivities that correspond to ∂R/∂Q, thereby
illustrating the procedure involved when the 2nd-level adjoint function comprises just one
component. Section 3.2.2 will illustrate the application of the 4th-CASAM-N methodology
to determine the exact expressions of the 2nd-order sensitivities that correspond to ∂R/∂k0,
thereby illustrating the procedure involved when the 2nd-level adjoint function comprises
two components.

3.2.1. Second-Order Sensitivities Corresponding to ∂R/∂Q

The application of the 4th-CASAM-N to compute efficiently and exactly second-order
sensitivities will be illustrated in this subsection by considering the 1st-order sensitivity
∂R/∂Q, the expression of which has been obtained in Equation (82). The sensitivity ∂R/∂Q
is representative of the procedure involved when applying the 4th-CASAM-N to a 1st-order
sensitivity that involves a single state function, which in this case is the 1st-level adjoint
function a(1)(x).

The second-order sensitivities corresponding to ∂R/∂k0 are obtained by determining
the G-differential of Equation (83), which has, by definition, the following expression:

{
δ

[
∂R
∂Q

]}
α0

, −

 d
dε

 `0+εδ`∫
0

[
a(1),0(x) + εδa(1)(x)

]
dx


ε=0

, {δ[∂R/∂Q]}dir + {δ[∂R/∂Q]}ind (98)
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The direct-effect term {δ[∂R/∂Q]}dir is defined to depend only on parameter variations
and, in the case of Equation (98), stems only from the derivative with respect to ε of the
upper limit of integration, i.e.,

{δ[∂R/∂k0]}dir , −(δ`)
{

a(1)
(

x = `0
)}

α0
= 0. (99)

As indicated in Equation (99), the direct-effect term vanishes because of the bound-
ary condition satisfied by the 1st-level adjoint function a(1)(x) provided in Equation
(79). Therefore, the G-differential {δ[∂R/∂Q]}α0 comprises only the indirect-effect term
{δ[∂R/∂Q]}ind, which depends only on the variation δa(1)(x) and is defined as follows:

{δ[∂R/∂Q]}ind , −


`∫

0

δa(1)(x)dx


α0

= {δ[∂R/∂Q]}α0 . (100)

The indirect-effect term defined by Equation (100) can be evaluated only after having
determined the variational function δa(1)(x), which is the solution of the system obtained
by taking the G-differential of the 1st-LASS defined by Equations (78)–(80), and which has
the following expression:

d2[δa(1)(x)]
dx2 = (δk0){2βδ(x− xr)}α0 + (δβ){2k0δ(x− xr)}α0

−(δxr){2k0βδ′(x− xr)}α0 , 0 < x < `0;
(101)

d
dx

[
δa(1)(x)

]
= 0, at x = 0; (102)

δa(1)(x) + (δ`)

{
da(1)(x)

dx

}
α0

= 0, at x = `0 . (103)

The system comprising Equations (101)–(103) is actually the 2nd-level variational sen-
sitivity system (2nd-LVSS) for the function δa(1)(x). Its solution, δa(1)(x), could be used to
determine the G-differential {δ[∂R/∂Q]}α0 shown in Equation (98). As δa(1)(x) depends on
parameter variations, however, solving repeatedly the 2nd-LVSS for all parameter variations
is avoided by constructing a corresponding 2nd-LASS, which would need to be solved only
once, as its solution would be independent of parameter variations and would be used to
obtain the G-differential {δ[∂R/∂Q]}α0 . As the 2nd-LVSS comprising Equations (101)–(103)
has the same structure as the 1st-LVSS comprising Equations (26)–(28), it follows that the
2nd-LASS that corresponds to the 2nd-LVSS comprising Equations (101)–(103) will be con-
structed by applying the same principles that were applied to construct the 1st-LASS in
Section 3.1 when determining the 1st-order sensitivities of the response R(T,α) , k2

r . Thus,
the inner product defined in Equation (30) will be used to construct the inner product of
Equation (101) with a yet undefined one-component function a(2)Q (x)—which will ultimately
become the sought-after 2nd-level adjoint function—to obtain the following relation:{∫̀

0
a(2)Q (x)

d2[δa(1)(x)]
dx2 dx

}
α0

= (δk0)

{
2β
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

+(δβ)

{
2k0
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

− (δxr)

{
2k0β

∫̀
0

a(2)Q (x)δ′(x− xr)dx

}
α0

.

(104)

The superscript “2” in the notation a(2)Q (x) indicates “2nd-level” while the subscript
“Q” indicates that that this 2nd-level adjoint function corresponds to the parameter “Q”.
Integrating the left side of Equation (104) twice by parts yields the following relation:
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{∫̀
0

a(2)Q (x)
d2[δa(1)(x)]

dx2 dx

}
α0

=

{∫̀
0

δa(1)(x)
d2
[

a(2)Q (x)
]

dx2 dx

}
α0

+
{

a(2)Q (x) d
dx

[
δa(1)(x)

]
− δa(1)(x) d

dx

[
a(2)Q (x)

]}x=`

x=0
.

(105)

Using the relation provided in Equation (104) and inserting into Equation (105) the
boundary conditions provided in Equations (102) and (103) makes it possible to recast
Equation (105) into the following form:{∫̀

0
δa(1)(x)

d2
[

a(2)Q (x)
]

dx2 dx

}
α0

= (δk0)

{
2β
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

+(δβ)

{
2k0
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

− (δxr)

{
2k0β

∫̀
0

a(2)Q (x)δ′(x− xr)dx

}
α0

−
{

a(2)Q (x) d
dx

[
δa(1)(x)

]
+ (δ`)

da(1)(x)
dx

d
dx

[
a(2)Q (x)

]}
x=`
−
{

δa(1)(x) d
dx

[
a(2)Q (x)

]}
x=0

.

(106)

The left side of Equation (106) is now required to represent the G-differential defined
in Equation (100). Furthermore, the definition of the 2nd-level adjoint function a(2)Q (x) is
completed by requiring that it satisfy boundary conditions, which would eliminate the
unknown boundary terms from Equation (106). Imposing these requirements yields the
following 2nd-LASS for a(2)Q (x):

d2

dx2 a(2)Q (x) = −1, 0 < x < `0; (107)

a(2)Q (x) = 0, at x = `0; (108)

d
[

a(2)Q (x)
]

dx
= 0, at x = 0. (109)

Recalling Equation (100) and implementing the relations represented by the 2nd-LASS
into Equation (106) transforms the latter relation into the following form:

{δ[∂R/∂Q]}ind = −(δ`)
{

da(1)(x)
dx

d
dx

[
a(2)Q (x)

]}
x=`

+ (δk0)

{
2β
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

+(δβ)

{
2k0
∫̀
0

a(2)Q (x)δ(x− xr)dx

}
α0

− (δxr)

{
2k0β

∫̀
0

a(2)Q (x)δ′(x− xr)dx

}
α0

.
(110)

Identifying the quantities that multiply the various parameter variations in Equation
(110) yields the following expressions for the corresponding 2nd-order sensitivities:

∂2R
∂Q∂Q

≡ 0, (111)

∂2R
∂k0∂Q

= 2β
`∫

0

a(2)Q (x)δ(x− xr)dx, (112)

∂2R
∂β∂Q

= 2k0

`∫
0

a(2)Q (x)δ(x− xr)dx, (113)
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∂2R
∂xr∂Q

= −2k0β

`∫
0

a(2)Q (x)δ′(x− xr)dx, (114)

∂2R
∂`∂Q

= −
{

da(1)(x)
dx

d
dx

[
a(2)Q (x)

]}
x=`

. (115)

The expressions on the right sides of Equations (112)–(115) are to be evaluated at the
nominal values of the respective parameters and state functions but the notation {}α0 has
been omitted for simplicity.

The expressions for the 2nd-order sensitivities obtained in Equations (112)–(115) can
be evaluated inexpensively, using quadrature formulas, after having solved the 2nd-LASS
once to obtain the 2nd-level adjoint function. Thus, solving the 2nd-LASS is the sole
“large-scale” computation needed in order to compute the respective sensitivities. In
contradistinction, using forward methods would have required at least as many “large-
scale” computations as there are model parameters.

Solving Equations (107)–(109) yields the following explicit expression for the 2nd-level
adjoint function a(2)Q (x):

a(2)Q (x) =
{(

`2 − x2
)

/2
}
α0

. (116)

Using the expressions for a(1)(x) and a(2)Q (x) in Equations (112)–(115) yields the fol-
lowing closed-form expressions for the respective 2nd-order sensitivities:

∂2R
∂k0∂Q

= β
(
`2 − x2

r

)
, (117)

∂2R
∂β∂Q

= k0

(
`2 − x2

r

)
, (118)

∂2R
∂xr∂Q

= −2k0βxr, (119)

∂2R
∂`∂Q

= 2k0β`. (120)

Of course, the above closed-form expressions are for verification purposes; in practice, the
values of the respective sensitivities are computed numerically using Equations (112)–(115),
as has been mentioned in the foregoing.

3.2.2. Second-Order Sensitivities Corresponding to ∂R/∂k0

The application of the 4th-CASAM-N to compute efficiently and exactly second-order
sensitivities will be illustrated in this subsection by considering the 1st-order sensitivity
∂R/∂k0, the expression of which has been obtained in Equation (83). The sensitivity ∂R/∂k0
is representative of the procedure involved when applying the 4th-CASAM-N to a 1st-order
sensitivity that involves both the original forward function T(x) and the 1st-level adjoint
function a(1)(x).

The second-order sensitivities corresponding to ∂R/∂k0 are obtained by determining
the G-differential of Equation (83), which has, by definition, the following expression:

{
δ
[

∂R
∂k0

]}
α0

,

{
d
dε

[
2
(
k0

0 + εδk0
) `0+εδ`∫

0

[
1 +

(
β0 + εδβ

)(
T0 + εδT

)]2
δ
[
x−

(
x0

r + εδxr
)]

dx

]}
ε=0

+

{
d
dε

[
Q0+εδQ
k0

0+εδk0

`0+εδ`∫
0

(
a(1),0 + εδa(1)

)
dx

]}
ε=0

, {δ[∂R/∂k0]}dir + {δ[∂R/∂k0]}ind,

(121)
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where the direct-effect term {δ[∂R/∂k0]}dir depends only on parameter variations and is
defined as follows:

{δ[∂R/∂k0]}dir , (δQ)

{
1
k0

∫̀
0

a(1)(x)dx

}
α0

−(δk0)

{
Q
k2

0

∫̀
0

a(1)(x)dx− 2
∫̀
0
[1 + βT(x)]2δ(x− xr)dx

}
α0

+(δβ)

{
4k0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−(δxr)

{
2k0

`0∫
0
[1 + βT(x)]2δ′(x− xr)dx

}
α0

,

(122)

and where the indirect-effect term {δ[∂R/∂k0]}ind depends only on variations δT(x) and
δa(1)(x), and is defined as follows:

{δ[∂R/∂k0]}ind ,

2k2
0β

`∫
0

[1 + βT(x)]δT(x)δ(x− xr)dx


α0

+

Q
k0

`∫
0

δa(1)(x)dx


α0

. (123)

The direct-effect term defined by Equation (122) can be evaluated immediately, as the
state functions T(x) and a(1)(x) are available already; in practice, this direct-effect term is
computed numerically. However, the indirect-effect term defined by Equation (123) can
be evaluated only after having determined the functions δT(x) and δa(1)(x). The function
δT(x) is the solution of the 1st-LVSS represented by Equations (26)–(28). The function
δa(1)(x) is the solution of the system obtained by taking the G-differential of the 1st-LASS
defined by Equations (78)–(80), which has the following expression:

d2[δa(1)(x)]
dx2 = (δk0){2βδ(x− xr)}α0 + (δβ){2k0δ(x− xr)}α0

−(δxr){2k0βδ′(x− xr)}α0 , 0 < x < `0;
(124)

d
dx

[
δa(1)(x)

]
= 0, at x = 0; (125)

δa(1)(x) + (δ`)

{
da(1)(x)

dx

}
α0

= 0, at x = `0 . (126)

Concatenating the 1st-LVSS and the G-differentiated 1st-LASS yields the following 2nd-
level variational sensitivity system (2nd-LVSS), comprising Equations (127) and (128) below,
for obtaining the 2nd-level variational function v(2)(2; x), which is also defined below:{

VM(2)V(2)(2; x)
}
α0

=
{

Q(2)
V (α; δα)

}
α0

, x ∈ Ωx, (127)

B(2)
V (2;α; δα) ,

 b(2)
V (1;α; δα)

b(2)
V (2;α; δα)

 =

(
0

0

)
, (128)

where

V(2)(2; x) ,

(
v(2)(1; x)

v(2)(2; x)

)
,

(
δT(x)

δψ(1)(x)

)
; Q(2)

V (α; δα) ,

 q(2)V (1;α; δα)

q(2)V (2;α; δα)

;

VM(2)(2× 2; x) ,

 d2

dx2 {k(T)[ ]} 0

0 d2[ ]
dx2

;

(129)



J. Nucl. Eng. 2022, 3 90

with

q(2)V (1;α; δα) , s(1)V (T;α; δα) , −(δQ) + (δk0)
Q
k0
− (δβ)k0

d
dx

[
T(x) dT(x)

dx

]
q(2)V (2;α; δα) , (δk0)2βδ(x− xr) + (δβ)2k0δ(x− xr)− (δxr)2k0βδ′(x− xr);

(130)

b(2)
V (1;α; δα) ,

(
{d[δT(x)]/dx}x=0

{δT(x)}x=`0 + (δ`){dT(x)/dx}x=`0

)
; (131)

b(2)
V (2;α; δα) ,


{

d
[
δψ(1)(x)

]
/dx

}
x=0{

δψ(1)(x)
}

x=`0
+ (δ`)

{
dψ(1)(x)/dx

}
x=`0

; (132)

To distinguish vectors from matrices, two capital bold letters were used (and will
henceforth be used) to denote matrices, as in the case of “the second-level variational
matrix” VM(2)

[
2× 2; u(2)(x);α

]
. The “2nd-level” is indicated by the superscript “(2)”.

Subsequently in this work, levels higher than the second will also be indicated by a
corresponding superscript attached to the appropriate (block-) vectors and/or (block-)
matrices. The argument “2× 2”, which appears in the list of arguments of VM(2)(2× 2;α),
indicates that this matrix is a 2× 2-dimensional matrix.

The need for solving the 2nd-LVSS is circumvented by deriving an alternative expres-
sion for the indirect-effect term defined in Equation (123), in which the function V(2)(2; x)
is replaced by a 2nd-level adjoint function that is independent of variations in the model
parameter and state functions. This 2nd-level adjoint function will satisfy a 2nd-level ad-
joint sensitivity system (2nd-LASS) which will be constructed by using the 2nd-LVSS as the
starting point and following the same principles as outlined in Section 3.1. The 2nd-LASS
will be constructed in a Hilbert space, which will be denoted as H2(Ωx) and which is
comprised of element vectors of the same form as V(2)(2; x); a generic vector in H2(Ωx) is a

two-component column vector of the form Ψ(2)(2; x) ,
[
ψ(2)(1; x),ψ(2)(2; x)

]†
∈ H2(Ωx).

The inner product of two vectors Ψ(2)(2; x) ,
[
ψ(2)(1; x),ψ(2)(2; x)

]†
∈ H2(Ωx) and

Φ(2)(2; x) ,
[
ϕ(2)(1; x),ϕ(2)(2; x)

]†
∈ H2(Ωx) in the Hilbert space H2(Ωx) will be de-

noted as
〈

Ψ(2)(2; x), Φ(2)(x)
〉

2
and defined as follows:

〈
Ψ(2)(2; x), Φ(2)(x)

〉
2
,

2

∑
i=1

〈
ψ(2)(i; x),ϕ(2)(i; x)

〉
1
=

2

∑
i=1


`∫

0

ψ(2)(i; x),ϕ(2)(i; x)dx


α0

. (133)

The inner product defined in Equation (133) is continuous in α in a neighborhood of
α0. Using the definition of the inner product defined in Equation (133), construct the inner

product of Equation (127) with a vector A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†
∈ H2(Ωx) to

obtain the following relation:{〈
A(2)

k (2; x), VM(2)(2× 2;α)V(2)(2; x)
〉

2

}
α0

=
{〈

A(2)
k (2; x), Q(2)

V (2;α; δα)
〉

2

}
α0

. (134)

The notation chosen for the vector A(2)
k (2; x) indicates the following characteristics of

this vector: (i) the bold letter A indicates that this quantity is a vector; (ii) the superscript “2”
indicates that this quantity is a “second-level” function; (iii) the subscript “k” indicates that
this quantity corresponds to the 1st-order sensitivity ∂R/∂k0 of the response with respect
to the parameter k0; (iv) the digit “2” in the argument of A(2)

k (2; x) indicates that this vector

has two components; (v) the letter “x” in the argument of A(2)
k (2; x) indicates that the two

components of this vector are functions of the independent variable “x”.
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In component form, Equation (134) has the following expression:{∫̀
0

a(2)k (1; x) d2

dx2 [k(T)δT(x)]dx

}
α0

+

{∫̀
0

a(2)k (2; x)
d2[δa(1)(x)]

dx2 dx

}
α0

=

{∫̀
0

a(2)k (1; x)q(2)V (1;α; δα)dx

}
α0

+

{∫̀
0

a(2)k (2; x)q(2)V (2;α; δα)dx

}
α0

.

(135)

The inner product on the left side of Equation (134) is now further transformed by
using the definition of the adjoint operator to obtain, after integrating twice by parts over
the independent variable x, the following relation:{〈

A(2)
k (2; x), VM(2)(2× 2;α)V(2)(2; x)

〉
2

}
α0

=
{〈

V(2)(2; x), AM(2)(2× 2;α)A(2)
k (2; x)

〉
2

}
α0

+

{[
P(2)

(
A(2)

k ; V(2);α
)]

∂Ωx

}
α0

.
(136)

In Equation (136), the adjoint (matrix-valued) operator AM(2)(2× 2;α) has the
following form:

AM(2)(2× 2;α) =

 k(T) d2[]
dx2 0

0 d2[]
dx2

, (137)

while the quantity
{[

P(2)
(

A(2); V(2);α
)]

∂Ωx

}
α0

denotes the corresponding bilinear con-

comitant on the domain’s boundary, evaluated at the nominal values for the parameters
and respective state functions, and having the following expression:{[

P(2)
(

A(2)
k ; V(2);α

)]
∂Ωx

}
α0

=
{

a(2)k (1; x) d
dx
[
k
(
T0)δT(x)

]
− δT(x)k

(
T0) d

dx

[
a(2)k (1; x)

]}x=`

x=0

+
{

a(2)k (2; x) d
dx

[
δa(1)(x)

]
− δa(1)(x) d

dx

[
a(2)k (2; x)

]}x=`

x=0
.

(138)

Inserting into Equation (138) the 2nd-LVSS’s boundary conditions provided in

Equation (128) reduces the bilinear concomitant
{[

P(2)
(

A(2)
k ; V(2);α

)]
∂Ωx

}
α0

to the

following expression:{[
P(2)

(
A(2)

k ; V(2);α
)]

∂Ωx

}
α0

=

{
a(2)k (1; x) d

dx
[
k
(
T0)δT(x)

]
+
[
(δ`)

dT(x)
dx

]
k
(
T0) da(2)k (1;x)

dx

}
x=`0

+

{
a(2)k (2; x) d

dx

[
δa(1)(x)

]
+

[
(δ`)

da(1)(x)
dx

]
da(2)k (2;x)

dx

}
x=`0

+

{
δT(x)k

(
T0) da(2)k (1;x)

dx

}
x=0

+

{
δa(1)(x)

da(2)k (2;x)
dx

}
x=0

.

(139)

The first term on the right side of Equation (136) is now required to represent the
indirect-effect term defined in Equation (123), which is accomplished by imposing the
following relation:{

AM(2)(2× 2;α)A(2)
k (2; x)

}
α0

=
{

Q(2)
A (2;α)

}
α0

, x ∈ Ωx, (140)

where

Q(2)
A (2;α) ,

(
q(2)A (1;α)
q(2)A (2;α)

)
,
(

4k0β[1 + βT(x)]δ(x− xr)
Q/k0

)
. (141)
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The definition domain of the adjoint (matrix-valued) operator AM(2)(2× 2;α) is now

specified by requiring the function A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†
to satisfy adjoint

boundary/initial conditions which fulfill the following conditions: (a) they must be inde-
pendent of unknown values of V(2)(2; x); (b) they must cause all terms containing unknown

values of V(2)(2; x) in the expression of
{[

P(2)
(

A(2)
k ; V(2);α

)]
∂Ωx

}
α0

to vanish. The above

requirements are satisfied by imposing the following boundary conditions:{
B(2)

A

(
A(2)

k ;α
)}

α0
,
{[

b(2)A

(
1; A(2)

k ;α
)

, . . . , b(2)A

(
4; A(2)

k ;α
)]†
}

α0
= 0; x ∈ ∂Ωx

(
α0
)

, (142)

where:
b(2)A

(
1; A(2)

k ;α
)
, a(2)k (1; x = `), (143)

b(2)A

(
1; A(2)

k ;α
)
,
{

da(2)k (1; x)/dx
}

x=0
, (144)

b(2)A

(
3; A(2)

k ;α
)
, a(2)k (2; x = `), (145)

b(2)A

(
1; A(2)

k ;α
)
,
{

da(2)k (2; x)/dx
}

x=0
, (146)

The system of equations comprising Equations (140) and (142) constitutes the 2nd-

LASS for the 2nd-level adjoint function A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†
.

Using the equations underlying the 2nd-LASS together with Equations (134) and (139)
in Equation (136) yields the following expression for the indirect-effect term defined in
Equation (123):

{δ[∂R/∂k0]}ind =

{∫̀
0

a(2)k (1; x)q(2)V (1;α; δα)dx

}
α0

+

{∫̀
0

a(2)k (2; x)q(2)V (2;α; δα)dx

}
α0

−(δ`)
{

k
(
T0) dT(x)

dx
da(2)k (1;x)

dx + da(1)(x)
dx

da(2)k (2;x)
dx

}
x=`0

.

(147)

Replacing in Equation (147) the source terms q(2)V (1;α; δα) and q(2)V (2;α; δα) with their
expressions provided in Equation (130) and adding the resulting equation to the expression
for the direct-effect term provided in Equation (122) yields the following expression for the
G-differential, defined in Equation (121):

{
δ
[

∂R
∂k0

]}
α0

=

{∫̀
0

a(2)k (1; x)
[
−(δQ) + (δk0)

Q
k0
− (δβ)k0

d
dx

(
T(x) dT(x)

dx

)]
dx

}
α0

+

{∫̀
0

a(2)k (2; x)[(δk0)2βδ(x− xr) + (δβ)2k0δ(x− xr)− (δxr)2k0βδ′(x− xr)]dx

}
α0

−(δ`)
{

k
(
T0) dT(x)

dx
da(2)k (1;x)

dx + da(1)(x)
dx

da(2)k (2;x)
dx

}
x=`0

+(δQ)

{
1
k0

∫̀
0

a(1)(x)dx

}
α0

− (δk0)

{
Q
k2

0

∫̀
0

a(1)(x)dx− 2
∫̀
0
[1 + βT(x)]2δ(x− xr)dx

}
α0

+(δβ)

{
4k0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx

}
α0

−(δxr)

{
2k0

`0∫
0
[1 + βT(x)]2δ′(x− xr)dx

}
α0

.

(148)
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Identifying in Equation (148) the quantities that multiply the various parameter varia-
tions yields the following expressions for the respective partial second-order sensitivities:

∂2R
∂Q∂k0

= −
`∫

0

a(2)k (1; x)dx +
1
k0

`∫
0

a(1)(x)dx, (149)

∂2R
∂k0∂k0

= Q
k0

∫̀
0

a(2)k (1; x)dx + 2β
∫̀
0

a(2)k (2; x)δ(x− xr)dx

− Q
k2

0

∫̀
0

a(1)(x)dx + 2
∫̀
0
[1 + βT(x)]2δ(x− xr)dx,

(150)

∂2R
∂β∂k0

= −k0
∫̀
0

a(2)k (1; x) d
dx

[
T(x) dT(x)

dx

]
dx + 2k0

∫̀
0

a(2)k (2; x)δ(x− xr)dx

+4k0
∫̀
0
[1 + βT(x)]T(x)δ(x− xr)dx ,

(151)

∂2R
∂xr∂k0

= −2k0β

`∫
0

a(2)k (2; x)δ′(x− xr)dx− 2k0

`0∫
0

[1 + βT(x)]2δ′(x− xr)dx (152)

∂2R
∂`∂k0

= −
{

k
(

T0
)dT(x)

dx
da(2)k (1; x)

dx
+

da(1)(x)
dx

da(2)k (2; x)
dx

}
x=`0

. (153)

The expressions presented in Equations (149)–(153) are to be evaluated at the nom-
inal values of the model parameters and state functions but the indicator {}α0 has been
omitted for simplicity. As the expressions and values for the functions T(x) and a(1)(x)
are already available, the expressions provided in Equations (149)–(153) can be evalu-
ated by using quadrature formulas after having determined the 2nd-level adjoint function

A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†
by solving the 2nd-LASS. Solving Equation (140) subject

to the boundary conditions provided in Equation (142) yields the following expressions:

a(2)k (1; x) = 4β[(x− xr)H(x− xr)− `+ xr], (154)

a(2)k (2; x) = Q
(

x2 − `2
)

/2k0. (155)

Inserting the expressions for T(x), a(1)(x) and A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†

in Equations (149)–(153) and performing the operations indicated on the right sides
of these equations yields the following closed-form expressions for the respective
second-order sensitivities:

∂2R
∂Q∂k0

= β
(
`2 − x2

r

)
, (156)

∂2R
∂k0∂k0

= 2, (157)

∂2R
∂β∂k0

= Q
(
`2 − x2

r

)
(158)

∂2R
∂k0∂xr

= −2βQxr, (159)

∂2R
∂`∂k0

= 2βQ`. (160)
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It is important to note that the symmetry relationship ∂2R/∂k0∂Q = ∂2R/∂Q∂k0 pro-
vides the following equality between the expressions provided in Equations (112) and (149):

∂2R
∂k0∂Q

= 2β
`∫

0

a(2)Q (x)δ(x− xr)dx =
1
k0

`∫
0

a(1)(x)dx−
`∫

0

a(2)k (1; x)dx =
∂2R

∂Q∂k0
, (161)

The identity provided in Equation (161) enables an intrinsic mutual verification of the
accuracy of the numerical computation of the respective adjoint functions.

As this paradigm illustrative heat conduction model comprises five uncertain model
parameters, there will be a total of 25 second-order sensitivities of the response R(T;α)
with respect to the model parameters. Of these 25 second-order sensitivities, 15 will be
distinct, while the others are not because of the intrinsic symmetries of the 2nd-order mixed
derivatives. Of the 25 second-order sensitivities, 10 have been obtained in Section 3.2. As
the computation of the remaining 15 second-order sensitivities of the response R(T;α) with
respect to the model parameters, are to be performed by applying the same 4th-CASAM-N
principles, as illustrated thus far in Section 3.2, the respective derivations will be omitted
for brevity. It is important to note that if all of these computations are performed, the mixed
2nd-order sensitivities of R(T;α) will have been computed twice, due to their symmetries,
in the same manner as indicated in Equation (161). These symmetry features enable the
intrinsic mutual verification of the accuracy of the numerical computation of all of the
1st-level and 2nd-level adjoint functions involved in the respective computations.

3.3. Third-Order Response Sensitivities

As has been shown in Section 3.1, this paradigm illustrative heat conduction model
comprises five uncertain model parameters, which means that each model response will
have five first-order sensitivities. Applying the principles underlying the determination
of all of the 1st-order sensitivities requires a single 1st-level adjoint function. Each of the
first-order sensitivities is treated as a response for the computation of the corresponding
five second-order sensitivities, which are in turn computed using a single 2nd-level adjoint
function. Thus, at most, five second-level adjoint functions will suffice to obtain all of the
25 second-order sensitivities, of which 15 will be distinct. Each of the second-order sensitiv-
ities will give rise to five third-order sensitivities, which will be computed using a single
3rd-level adjoint function. This section will illustrate the application of the principles of the
4th-CASAM-N methodology to derive the exact expressions for representative 3rd-order
sensitivities corresponding to the 2nd-order sensitivities obtained in Section 3.2. Examining
the expressions of the 2nd-order sensitivities obtained in Section 3.2, it becomes apparent
that that the 3rd-level adjoint functions, which would be needed to compute the 3rd-order
sensitivities, will comprise as few as one component (if the originating 2nd-order sensitivity
depends on a single component of the state function or the 1st- and 2nd-level adjoint func-
tions) or as many as four components, if the originating 2nd-order sensitivity depends on all

state and adjoint functions, namely T(x), a(1)(x) and A(2)
k (2; x) ,

[
a(2)k (1; x), a(2)k (2; x)

]†
.

It is instructive to illustrate the consequence of the symmetry properties of the
2nd-order sensitivities by means of the equality relation indicated in Equation (161) between
the two alternative expressions for ∂2R/∂k0∂Q. Using these two alternative expressions,
this section will illustrate the symmetry properties of the 3rd-order sensitivities that arise
from the symmetry properties of ∂2R/∂k0∂Q.

Applying the definition of the G-differential to Equation (149) yields the following expression:
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{
δ
[

∂2R
∂k0∂Q

]}
α0

,

{
d
dε

[
1

k0
0+εδk0

`0+εδ`∫
0

[
a(1),0(x) + εδa(1)(x)

]
dx

]}
ε=0

−
{

d
dε

`0+εδ`∫
0

[
a(2),0k (1; x) + εδa(2)k (1; x)

]
dx

}
ε=0

,
{

δ
[
∂2R/∂Q∂k0

]}
dir +

{
δ
[
∂2R/∂Q∂k0

]}
ind.

(162)

The direct-effect term
{

δ
[
∂2R/∂Q∂k0

]}
dir is defined to depend only on parameter

variations and has the following expression:

{
δ
[
∂2R/∂Q∂k0

]}
dir , −(δk0)

{
1
k2

0

∫̀
0

a(1)(x)dx

}
α0

+(δ`)

{
a(1)(x=`)

k0
− a(2)k (1; x = `)

}
α0

= −(δk0)

{
1
k2

0

∫̀
0

a(1)(x)dx

}
α0

.

(163)

The boundary terms on the right side of Equation (163) vanish in view of the boundary
conditions given in Equations (79) and (142). The direct-effect term can be evaluated at
this stage.

The indirect-effect term
{

δ
[
∂2R/∂Q∂k0

]}
ind is defined to depend only on the varia-

tions δa(1)(x) and δa(2)k (1; x); it has the following expression:

{
δ
[
∂2R/∂Q∂k0

]}
ind

,

 1
k0

`∫
0

δa(1)(x)dx


α0

−


`∫

0

δa(2)k (1; x)dx


α0

. (164)

The variation δa(1)(x) is the solution of the 2nd-LVSS defined in Equations (101)–(103).
The variation δa(2)k (1; x) is the solution of the system of equations obtained by taking the
G-differential of the 2nd-LASS defined in Equations (140) and (142), which yields:d2

[
δa(2)k (1; x)

]
dx2


α0

=
{

4(δβ)δ(x− xr)− 4(δxr)βδ′(x− xr)
}
α0 , 0 < x < `0; (165)

δa(2)k (1; x) + (δ`)

{
da(2)k (1; x)

dx

}
α0

= 0, at x = `0; (166)

d
[
δa(2)k (1; x)

]
dx

= 0, at x = 0. (167)

The system comprising Equations (101)–(103) and (165)–(167) constitutes the 3rd-level
variational sensitivity system (3rd-LVSS) for the functions δa(1)(x) and δa(2)k (1; x). Rather
than solving this 3rd-LVSS repeatedly for the various parameter variations, it is compu-
tationally considerably more advantageous to recast the indirect-effect term defined in
Equation (164) in terms of a third-level adjoint function, which will be the solution of a
3rd-level adjoint sensitivity system (3rd-LASS) to be constructed by applying the prin-
ciples of the 4th-CASAM-N methodology. As the indirect-effect term depends on two
variational functions, δa(1)(x) and δa(2)k (1; x), it follows that the 3rd-level adjoint func-

tion will be a two-component vector of the form A(3)
k (2; x) ,

[
a(3)k (1; x), a(3)k (2; x)

]†
≡[

a(3)k (1; x), a(3)k (2; x); a(3)k (3; x) ≡ 0, a(3)k (4; x) ≡ 0
]†

, rather than a four-component vector,
as would have been the case if the indirect-effect term had depended on a four-
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component variational vector comprising the functions δT(x), δa(1)(x) and δA(2)
k (2; x) ,[

δa(2)k (1; x), δa(2)k (2; x)
]†

.
Thus, the 3rd-LASS, which corresponds to the 3rd-LVSS comprising Equations (101)–(103)

and (165)–(167), can be constructed using the inner product provided in Equation (133) and
following the same conceptual steps as presented in Section 3.2.2. The main conceptual
steps for constructing the requisite 3rd-LASS are as follows:

1. Using Equation (133), construct the inner product of a yet undefined vector A(3)
k (2; x) ,[

a(3)k (1; x), a(3)k (2; x)
]†

with Equations (101) and (165) to obtain the following relation:{∫̀
0

a(3)k (1; x)
d2[δa(1)(x)]

dx2 dx

}
α0

+

{∫̀
0

a(3)k (2; x)
d2
[
δa(2)k (1;x)

]
dx2 dx

}
α0

= (δk0)

{
2β
∫̀
0

a(3)k (1; x)δ(x− xr)dx

}
α0

+ (δβ)

{
2k0
∫̀
0

a(3)k (1; x)δ(x− xr)dx

}
α0

−(δxr)

{
2k0β

∫̀
0

a(3)k (1; x)δ′(x− xr)dx

}
α0

+ (δβ)

{
4
∫̀
0

a(3)k (2; x)δ(x− xr)dx

}
α0

−(δxr)

{
4β
∫̀
0

a(3)k (2; x)δ′(x− xr)dx

}
α0

, 0 < x < `0.

(168)

2. Integrate the left side of Equation (168) twice by parts to obtain the following relation:{∫̀
0

a(3)k (1; x)
d2[δa(1)(x)]

dx2 dx

}
α0

+

{∫̀
0

a(3)k (2; x)
d2
[
δa(2)k (1;x)

]
dx2 dx

}
α0

=

{∫̀
0

δa(1)(x)
d2
[

a(3)k (1;x)
]

dx2 dx

}
α0

+

{∫̀
0

δa(2)k (1; x)
d2
[

a(3)k (2;x)
]

dx2 dx

}
α0

+
{

a(3)k (1; x) d
dx

[
δa(1)(x)

]
− δa(1)(x) d

dx

[
a(3)k (1; x)

]}x=`

x=0

+
{

a(3)k (2; x) d
dx

[
δa(2)k (1; x)

]
− δa(2)k (1; x) d

dx

[
a(3)k (2; x)

]}x=`

x=0
.

(169)

3. Inserting into Equation (169) the boundary conditions provided in Equations (102),
(103), (166) and (167) makes it possible to recast Equation (169) into the following
form: {∫̀

0
δa(1)(x)

d2
[

a(3)k (1;x)
]

dx2 dx

}
α0

+

{∫̀
0

δa(2)k (1; x)
d2
[

a(3)k (2;x)
]

dx2 dx

}
α0

=

{∫̀
0

a(3)k (1; x)
d2[δa(1)(x)]

dx2 dx

}
α0

+

{∫̀
0

a(3)k (2; x)
d2
[
δa(2)k (1;x)

]
dx2 dx

}
α0

−
{

a(3)k (1; x) d
dx

[
δa(1)(x)

]
+ (δ`)

da(1)(x)
dx

d
dx

[
a(3)k (1; x)

]}
x=`

−
{

δa(1)(x) d
dx

[
a(3)k (1; x)

]}
x=0
−
{

δa(2)k (1; x) d
dx

[
a(3)k (2; x)

]}
x=0

−
{

a(3)k (2; x) d
dx

[
δa(2)k (1; x)

]
+ (δ`)

da(2)k (1;x)
dx

d
dx

[
a(3)k (2; x)

]}
x=`

.

(170)
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4. The left side of Equation (170) is required to represent the indirect-effect term defined
in Equation (164) and the unknown values of the functions are eliminated from the
right side of Equation (170) by imposing the following relations:d2

[
a(3)k (1; x)

]
dx2


α0

=

{
1
k0

}
α0

, 0 < x < `0; (171)

d
dx

[
a(3)k (1; x)

]
= 0, at x = 0; (172)

a(3)k (1; x) = 0, at x = `0; (173)

d2
[

a(3)k (2; x)
]

dx2 = −1, 0 < x < `0; (174)

d
dx

[
a(3)k (2; x)

]
= 0, at x = 0; (175)

a(3)k (2; x) = 0, at x = `0; (176)

5. The relations indicated in Equations (171)–(176) constitute the 3rd-LASS to be satisfied

by the 3rd-level adjoint function A(3)
k (2; x) ,

[
a(3)k (1; x), a(3)k (2; x)

]†
. Inserting the

equations underlying this 3rd-LASS into Equation (170) reduces the latter to the
following form:

{
δ
[
∂2R/∂Q∂k0

]}
ind =

{∫̀
0

a(3)k (1; x)
d2[δa(1)(x)]

dx2 dx

}
α0

+

{∫̀
0

a(3)k (2; x)
d2
[
δa(2)k (1;x)

]
dx2 dx

}

−(δ`)
{

da(1)(x)
dx

d
dx

[
a(3)k (1; x)

]
+

da(2)k (1;x)
dx

d
dx

[
a(3)k (2; x)

]}
x=`

.

(177)

6. The two variational terms that appear in the first two terms on the right side of
Equation (177) are now replaced by their equivalent expressions provided on the left
sides of Equations (101) and (165), respectively, to obtain the following relation:

{
δ
[
∂2R/∂Q∂k0

]}
ind = (δk0)

{
2β
∫̀
0

a(3)k (1; x)δ(x− xr)dx

}
α0

+(δβ)

{
2k0
∫̀
0

a(3)k (1; x)δ(x− xr)dx

}
α0

− (δxr)

{
2k0β

∫̀
0

a(3)k (1; x)δ′(x− xr)dx

}
α0

+(δβ)

{
4
∫̀
0

a(3)k (2; x)δ(x− xr)dx

}
− (δxr)

{
4β
∫̀
0

a(3)k (2; x)δ′(x− xr)dx

}
α0

−(δ`)
{

da(1)(x)
dx

d
[

a(3)k (1;x)
]

dx +
da(2)k (1;x)

dx
d
[

a(3)k (2;x)
]

dx

}
x=`

.

(178)

Presently inserting into Equation (162) the expression of the indirect-effect term ob-
tained in Equation (178), together with the expression of the direct-effect term obtained in
Equation (163), yields the following expression for the G-variation

{
δ
[
∂2R/∂k0∂Q

]}
α0 :{

δ
[

∂2R
∂k0∂Q

]}
α0

,
{

∂3R
∂k0∂2Q

}
α0

δQ +
{

∂3R
∂2k0∂Q

}
α0

δk0 +
{

∂3R
∂β∂k0∂Q

}
α0

δβ

+
{

∂3R
∂xr∂k0∂Q

}
α0

δxr +
{

∂3R
∂`∂k0∂Q

}
α0

δ`,
(179)
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where the respective 3rd-order response sensitivities have the following expressions:

∂3R
∂k0∂2Q

≡ 0, (180)

∂3R
∂2k0∂Q

= 2β
`∫

0

a(3)k (1; x)δ(x− xr)dx− 1
k2

0

`∫
0

a(1)(x)dx, (181)

∂3R
∂β∂k0∂Q

= 2k0

`∫
0

a(3)k (1; x)δ(x− xr)dx + 4
`∫

0

a(3)k (2; x)δ(x− xr)dx, (182)

∂3R
∂xr∂k0∂Q

= −2k0β

`∫
0

a(3)k (1; x)δ′(x− xr)dx− 4β
`∫

0

a(3)k (2; x)δ′(x− xr)dx, (183)

∂3R
∂`∂k0∂Q

= −

da(1)(x)
dx

d
[

a(3)k (1; x)
]

dx
+

da(2)k (1; x)
dx

d
[

a(3)k (2; x)
]

dx


x=`

. (184)

Solving the 3rd-LASS analytically yields the following expressions for the components

of the 3rd-level adjoint function A(3)
k (2; x) ,

[
a(3)k (1; x), a(3)k (2; x)

]†
:

a(3)k (1; x) =
x2 − `2

2k0
, (185)

a(3)k (2; x) =
`2 − x2

2
. (186)

Using the expressions obtained in Equations (185) and (186) together with the
requisite expressions for the various functions that have been already obtained in
Equations (181)–(184) yields the following closed-form analytical expressions for the re-
spective 3rd-order sensitivities:

∂3R
∂2k0∂Q

= 0, (187)

∂3R
∂β∂k0∂Q

= `2 − x2
r , (188)

∂3R
∂xr∂k0∂Q

= −2βxr, (189)

∂3R
∂`∂k0∂Q

= 2β`. (190)

On the other hand, the 3rd-order sensitivities stemming from ∂2R/∂k0∂Q can be ob-
tained by using the alternative expression for ∂2R/∂k0∂Q provided in Equation (112). Ap-
plying the definition of the G-differential to Equation (112) yields the following expression:

{
δ
[

∂2R
∂k0∂Q

]}
α0

,

{
d
dε

[
2
(
β0 + εδβ

) `0+εδ`∫
0

(
a(2),0Q + εδa(2)Q

)
δ
(
x− x0

r − εδxr
)
dx

]}
ε=0

,
{

δ
[
∂2R/∂Q∂k0

]}
dir +

{
δ
[
∂2R/∂Q∂k0

]}
ind.

(191)

The direct-effect term
{

δ
[
∂2R/∂Q∂k0

]}
dir is defined to depend only on parameter

variations and has the following expression:
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{
δ
[
∂2R/∂Q∂k0

]}
dir , (δβ)

{
2
∫̀
0

a(2)Q (x)δ
(
x− x0

r
)
dx

}
α0

−(δxr)

{
2β
∫̀
0

a(2)Q (x)δ′
(
x− x0

r
)
dx

}
α0

.

(192)

The direct-effect term can be evaluated at this stage. The indirect-effect term{
δ
[
∂2R/∂Q∂k0

]}
ind is defined to depend only on the variation δa(2)Q (x) and has the

following expression:

{
δ
[
∂2R/∂Q∂k0

]}
ind

,

2β
`∫

0

δa(2)Q (x)δ(x− xr)dx


α0

. (193)

The variational function δa(2)Q (x) is the solution of the system obtained by taking
the G-differential of the 2nd-LASS defined by Equations (107)–(109), and which has the
following expression:

d2
[
δa(2)Q (x)

]
dx2 = 0, 0 < x < `0; (194)

δa(2)Q (x) + (δ`)

da(2)Q (x)

dx


α0

= 0, at x = `0 ; (195)

d
[
δa(2)Q (x)

]
dx

= 0, at x = 0. (196)

The system comprising Equations (194)–(196) represents the 3rd-level variational sen-
sitivity system (3rd-LVSS) for the function δa(2)Q (x). Its solution, δa(2)Q (x), can be used to
determine the indirect-effect term

{
δ
[
∂2R/∂Q∂k0

]}
ind defined in Equation (193). In this ex-

treme case, the 3rd-LVSS for the function δa(2)Q (x) depends on a single parameter variation

so it would need to be solved only once to determine δa(2)Q (x). In this extreme case, con-
structing a 3rd-level adjoint sensitivity system (3rd-LASS) corresponding to the 3rd-LVSS
for the function δa(2)Q (x) would not improve the computational efficiency, as solving the
corresponding 3rd-LASS would be comparable to solving the 3rd-LVSS once. Consequently,
in this extreme case, the 3rd-LVSS is solved directly to obtain the following expression
for δa(2)Q (x):

δa(2)Q (x) = `(δ`). (197)

Using the result obtained in Equation (197) in Equation (193) yields:{
δ
[
∂2R/∂Q∂k0

]}
ind

= (δ`){2β`}α0 . (198)

Using the result obtained in Equation (116) for a(2)Q (x) in Equation (192) yields the
following result:{

δ
[
∂2R/∂Q∂k0

]}
dir

, (δβ)
{(

`2 − x2
r

)}
α0
− 2(δxr){βxr}α0 . (199)

Adding the results obtained in Equations (198) and (199), and identifying the expres-
sions that multiply the respective parameter variations, yields the following results for the
corresponding 3rd-order sensitivities:
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∂3R
∂k0∂2Q

=
∂3R

∂2k0∂Q
≡ 0, (200)

∂3R
∂β∂k0∂Q

=
(
`2 − x2

r

)
, (201)

∂3R
∂xr∂k0∂Q

= −2βxr, (202)

∂3R
∂`∂k0∂Q

= 2β`. (203)

As has been illustrated in this section by using the two alternative expressions of the
2nd-order sensitivity ∂2R/∂Q∂k0, the symmetry properties of the 2nd-order sensitivities
enable their selective computation, as well as the verification of the accuracy of the various
first- and second-level adjoint functions, when computed numerically, as would be the case
in practice.

3.4. Fourth-Order Response Sensitivities

The fourth-order sensitivities are determined by considering each of the third-order
sensitivities as a “model response” and consequently determining the corresponding
G-differential. The concepts underlying the computation of the 4th-order sensitivities can
be illustrated by using the expression of the 3rd-order sensitivity ∂3R/∂β∂k0∂Q, as the
requisite algebraic operations that would be required to determine the 4th-order sensi-
tivities stemming from ∂3R/∂β∂k0∂Q are sufficiently transparent to avoid obscuring the
underlaying conceptual steps involved in the application of the 4th-CASAM-N. Applying
the definition of the G-differential to Equation (182) yields the following relation:{

δ
[

∂3R
∂β∂k0∂Q

]}
α0

,

{
d
dε

[
2
(
k0

0 + εδk0
) `0+εδ`∫

0

[
a(3),0k (1; x) + εδa(3)k (1; x)

]
δ
(
x− x0

r − εδxr
)
dx

]}
ε=0

+

{
d
dε

[
4
`0+εδ`∫

0

[
a(3),0k (2; x) + εδa(3)k (2; x)

]
δ
(
x− x0

r − εδxr
)
dx

]}
ε=0

,
{

δ
[
∂3R/∂β∂k0∂Q

]}
dir +

{
δ
[
∂3R/∂β∂k0∂Q

]}
ind.

(204)

The direct-effect term
{

δ
[
∂3R/∂β∂k0∂Q

]}
dir is defined to depend only on parameter

variations and has the following expression:

{
δ
[
∂3R/∂β∂k0∂Q

]}
dir , (δk0)

{
2
∫̀
0

a(3)k (1; x)δ(x− xr)dx

}
α0

−(δxr)

{∫̀
0

[
2k0a(3)k (1; x) + 4a(3)k (2; x)

]
δ′(x− xr)dx

}
α0

.

(205)

The indirect-effect term
{

δ
[
∂3R/∂β∂k0∂Q

]}
ind is defined to depend only on the varia-

tions δa(3)k (1; x) and δa(3)k (2; x); it has the following expression:{
δ
[
∂3R/∂β∂k0∂Q

]}
ind

,

{
2k0
∫̀
0

δa(3)k (1; x)δ(x− xr)dx

}
α0

+

{
4
∫̀
0

δa(3)k (2; x)δ(x− xr)dx

}
α0

.
(206)
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The variations δa(3)k (1; x) and δa(3)k (2; x) are the solutions of the system of equations
obtained by taking the G-differential of the 3rd-LASS defined in Equations (142) and
(171)–(176), which yields:d2

[
δa(3)k (1; x)

]
dx2


α0

= −(δk0)

{
1
k2

0

}
α0

, 0 < x < `0; (207)

d
dx

[
δa(3)k (1; x)

]
= 0, at x = 0; (208)

δa(3)k (1; x) + (δ`)

{
da(3)k (1; x)

dx

}
α0

= 0, at x = `0; (209)

d2
[
δa(3)k (2; x)

]
dx2


α0

= 0, 0 < x < `0; (210)

d
dx

[
δa(3)k (2; x)

]
= 0, at x = 0; (211)

δa(3)k (2; x) + (δ`)

{
da(3)k (2; x)

dx

}
α0

= 0, at x = `0. (212)

The system comprising Equations (207)–(212) constitutes the 4th-level variational
sensitivity system (4th-LVSS) for the functions δa(3)k (1; x) and δa(3)k (2; x). Rather than solv-
ing this 4th-LVSS repeatedly for the various parameter variations, it is computationally
considerably more advantageous to recast the indirect-effect term defined in Equation (206)
in terms of a fourth-level adjoint function, which will be the solution of a 4th-level ad-
joint sensitivity system (4th-LASS) to be constructed by applying the principles of the
4th-CASAM-N methodology. As the indirect-effect term depends on two variational
functions, δa(3)k (1; x) and δa(3)k (2; x), it follows that the 4th-level adjoint function will be

a two-component vector of the form A(4)
k (2; x) ,

[
a(4)k (1; x), a(4)k (2; x)

]†
. The 4th-LASS,

which corresponds to the 4th-LVSS comprising Equations (207)–(212), will be constructed
by using the inner product provided in Equation (133) and following the same conceptual
steps as presented in Section 3.2.2. The main conceptual steps for constructing the requisite
4th-LASS are as follows:

1. Using Equation (133), construct the inner product of a yet undefined vector A(4)
k (2; x) ,[

a(4)k (1; x), a(4)k (2; x)
]†

with Equations (207) and (210) to obtain the following relation:{∫̀
0

a(4)k (1; x)
d2
[
δa(3)k (1;x)

]
dx2 dx

}
α0

+

{∫̀
0

a(4)k (2; x)
d2
[
δa(3)k (2;x)

]
dx2 dx

}
α0

= −(δk0)

{
1
k2

0

∫̀
0

a(4)k (1; x)dx

}
α0

.

(213)
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2. Integrate the left side of Equation (213) twice by parts to obtain the following relation:{∫̀
0

a(4)k (1; x)
d2
[
δa(3)k (1;x)

]
dx2 dx

}
α0

+

{∫̀
0

a(4)k (2; x)
d2
[
δa(3)k (2;x)

]
dx2 dx

}
α0

=

{∫̀
0

δa(3)k (1; x)
d2
[

a(4)k (1;x)
]

dx2 dx

}
α0

+

{∫̀
0

δa(3)k (2; x)
d2
[

a(4)k (2;x)
]

dx2 dx

}
α0

+
{

a(4)k (1; x) d
dx

[
δa(3)k (1; x)

]
− δa(3)k (1; x) d

dx

[
a(4)k (1; x)

]}x=`

x=0

+
{

a(4)k (2; x) d
dx

[
δa(3)k (2; x)

]
− δa(3)k (2; x) d

dx

[
a(4)k (2; x)

]}x=`

x=0
.

(214)

3. Inserting into Equation (214) the boundary conditions provided in Equations (208),
(209), (211) and (212) makes it possible to recast Equation (214) into the following form:{∫̀

0
δa(3)k (1; x)

d2
[

a(4)k (1;x)
]

dx2 dx

}
α0

+

{∫̀
0

δa(3)k (2; x)
d2
[

a(4)k (2;x)
]

dx2 dx

}
α0

=

{∫̀
0

a(4)k (1; x)
d2
[
δa(3)k (1;x)

]
dx2 dx

}
α0

+

{∫̀
0

a(4)k (2; x)
d2
[
δa(3)k (2;x)

]
dx2 dx

}
α0

−
{

a(4)k (1; x) d
dx

[
δa(3)k (1; x)

]
+ (δ`)

da(3)k (1;x)
dx

d
dx

[
a(4)k (1; x)

]}
x=`

−
{

δa(3)k (1; x) d
dx

[
a(4)k (1; x)

]}
x=0

−
{

δa(3)k (2; x) d
dx

[
a(4)k (2; x)

]}
x=0

−
{

a(4)k (2; x) d
dx

[
δa(3)k (2; x)

]
+ (δ`)

da(3)k (2;x)
dx

d
dx

[
a(4)k (2; x)

]}
x=`

.

(215)

4. The left side of Equation (215) is required to represent the indirect-effect term defined
in Equation (206) and the unknown values of the functions are eliminated from the
right side of Equation (215) by imposing the following relations:d2

[
a(4)k (1; x)

]
dx2


α0

= 2{k0δ(x− xr)}α0 , 0 < x < `0; (216)

d
dx

[
a(4)k (1; x)

]
= 0, at x = 0; (217)

a(4)k (1; x) = 0, at x = `0; (218)d2
[

a(4)k (2; x)
]

dx2


α0

= 4{δ(x− xr)}α0 , 0 < x < `0; (219)

d
dx

[
a(4)k (2; x)

]
= 0, at x = 0; (220)

a(4)k (2; x) = 0, at x = `0. (221)

5. The relations indicated in Equations (216)–(221) constitute the 4th-LASS to be satisfied

by the 4th-level adjoint function A(4)
k (2; x) ,

[
a(4)k (1; x), a(4)k (2; x)

]†
. Inserting the
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equations underlying this 4th-LASS into Equation (206) reduces the latter to the
following form:

{
δ
[
∂3R/∂β∂k0∂Q

]}
ind =

{∫̀
0

a(4)k (1; x)
d2
[
δa(3)k (1;x)

]
dx2 dx

}
α0

+

{∫̀
0

a(4)k (2; x)
d2
[
δa(3)k (2;x)

]
dx2 dx

}
α0

−(δ`)
{

da(3)k (1;x)
dx

d
dx

[
a(4)k (1; x)

]
+

da(3)k (2;x)
dx

d
dx

[
a(4)k (2; x)

]}
x=`

.

(222)

6. The two variational terms, which appear in the first two terms on the right-side of
Equation (222), are now replaced by their equivalent expressions provided on left
sides of Equations (207) and (210), respectively, to obtain the following relation:

{
δ
[
∂3R/∂β∂k0∂Q

]}
ind = −(δk0)

{
1
k2

0

∫̀
0

a(4)k (1; x)

}
α0

−(δ`)
{

da(3)k (1;x)
dx

d
dx

[
a(4)k (1; x)

]
+

da(3)k (2;x)
dx

d
dx

[
a(4)k (2; x)

]}
x=`

.

(223)

Now inserting into Equation (204) the expression of the indirect-effect term ob-
tained in Equation (223), together with the expression of the direct-effect term obtained in
Equation (205), yields the following expression for the G-variation

{
δ
[
∂2R/∂k0∂Q

]}
α0 :{

δ
[

∂3R
∂β∂k0∂Q

]}
α0

,
{

∂4R
∂β∂k0∂2Q

}
α0

δQ +
{

∂4R
∂β∂2k0∂Q

}
α0

δk0 +
{

∂4R
∂2β∂k0∂Q

}
α0

δβ

+
{

∂4R
∂xr∂β∂k0∂Q

}
α0

δxr +
{

∂4R
∂`∂β∂k0∂Q

}
α0

δ`,
(224)

where the respective 4th-order response sensitivities have the following expressions:

∂4R
∂β∂k0∂2Q

≡ 0, (225)

∂4R
∂β∂2k0∂Q

= 2
`∫

0

a(3)k (1; x)δ(x− xr)dx− 1
k2

0

`∫
0

a(4)k (1; x), (226)

∂4R
∂2β∂k0∂Q

≡ 0, (227)

∂4R
∂xr∂β∂k0∂Q

= −
`∫

0

[
2k0a(3)k (1; x) + 4a(3)k (2; x)

]
δ′(x− xr)dx, (228)

∂4R
∂`∂β∂k0∂Q

= −
{

da(3)k (1; x)
dx

d
dx

[
a(4)k (1; x)

]
+

da(3)k (2; x)
dx

d
dx

[
a(4)k (2; x)

]}
x=`

. (229)

Solving the 4th-LASS analytically yields the following expressions for the components

of the 4th-level adjoint function A(4)
k (2; x) ,

[
a(4)k (1; x), a(4)k (2; x)

]†
:

a(4)k (1; x) = {2k0[(x− xr)H(x− xr)− `+ xr]}α0 , (230)

a(4)k (2; x) = {4[(x− xr)H(x− xr)− `+ xr]}α0 . (231)
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Using the expressions obtained in Equations (230) and (231) together with the expres-
sions for the various functions that have been already obtained in Equations (181)–(184)
yields the following closed-form analytical expressions for the 3rd-order sensitivities shown
in Equations (226), (228) and (229), respectively:

∂4R
∂β∂2k0∂Q

= 0, (232)

∂4R
∂xr∂β∂k0∂Q

= −2xr, (233)

∂4R
∂`∂β∂k0∂Q

= 2`. (234)

4. Discussion

This work has illustrated the application of the “fourth-order comprehensive sensi-
tivity analysis methodology for nonlinear systems (abbreviated as “4th-CASAM-N”) to a
paradigm model of nonlinear heat conduction. This model was chosen because it admits
closed-form expressions for the response sensitivities of all orders, while the algebraic
operations involved are sufficiently simple to avoid obscuring the principles underlying
the 4th-CASAM-N. The exact explicit expressions of representative response sensitivities
of 1st-, 2nd-, 3rd- and 4th-order were determined to illustrate that the 4th-CASAM-N
methodology provides sensitivities of linear and nonlinear responses with respect to all
model parameters, including correlations, boundary conditions and imprecisely known
material boundaries (as would be caused by manufacturing tolerances). The responses
chosen for this paradigm model include not only physically measurable quantities but
also a synthetic response designed to illustrate the enormous possible reduction in the
number of computations when using the 4th-CASAM-N—rather than other methods—for
computing response sensitivities.

This illustrative paradigm model has also demonstrated that the implementation of
the 4th-CASAM-N requires very little additional effort beyond the construction of the
1st-level adjoint sensitivity system (1st-LASS) for computing the first-order sensitivities.
This is because the operators and boundary conditions involved in the 2nd-, 3rd- and
4th-level adjoint sensitivity systems (2nd-LASS, 3rd-LASS and 4th-LASS) are similar to
the operators and boundary conditions involved in the 1st-LASS. The largest differences
between the 1st-LASS, 2nd-LASS, 3rd-LASS and 4th-LASS arise from the various source
terms involved in the adjoint systems of various levels.

Ongoing work aims at generalizing the 4th-CASAM-N methodology to fifth-order
and exploring the possibility of developing a comprehensive adjoint sensitivity analysis
methodology for nonlinear systems to enable the computation of sensitivities of arbitrarily
high order, as a companion methodology to the recently developed “nth-Order Comprehen-
sive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint
Linear Systems (nth-CASAM-L)” [4].

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Cacuci, D.G. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (4th-CASAM-N): I.

Mathematical Framework. Energies 2021, 14, 3335. [CrossRef]
2. Cacuci, D.G. Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) for Large-Scale Nonlinear Systems: II.

Illustrative Application to a Paradigm Nonlinear Heat Conduction Benchmark. Nucl. Sci. Eng. 2016, 184, 31–52. [CrossRef]
3. Cacuci, D.G. The Second-Order Adjoint Sensitivity Analysis Methodology; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2018; p. 305.
4. Cacuci, D.G. The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint

Linear Systems (nth-CASAM-L): I. Mathematical Framework. Energies 2021, 14, 8314. [CrossRef]

http://doi.org/10.3390/en14113335
http://doi.org/10.13182/NSE16-31
http://doi.org/10.3390/en14248314

	Introduction 
	Illustrative Model: Nonlinear Heat Conduction through a Slab 
	Illustrative Application of the 4th-CASAM-N to the Nonlinear Conduction Model 
	First-Order Response Sensitivities 
	First-Order Sensitivities of the Forward State Function (Temperature) 
	First-Order Sensitivities of a Linear Response (Thermal Conductivity) 
	First-Order Sensitivities of a Nonlinear Response 

	Second-Order Response Sensitivities 
	Second-Order Sensitivities Corresponding to R/Q  
	Second-Order Sensitivities Corresponding to R/k0  

	Third-Order Response Sensitivities 
	Fourth-Order Response Sensitivities 

	Discussion 
	References

