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Abstract: Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order
to investigate the reactor behaviour, each with a distinct point of view: the former is related to
fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to
compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The
possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently
implemented and tested in the development version of TRIPOLI-4®, using a modified version of
the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a
preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small
deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the
fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However,
for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.
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1. Introduction

Assessing the asymptotic behaviour of a nuclear system is intimately related to com-
puting the dominant direct (Here and throughout the manuscript, the terms ‘direct’ and
‘forward’ are equivalently used.) eigenmode and the associated dominant eigenvalue of
the configuration under analysis, which is central in several applications in reactor physics,
including pulsed neutron reactivity measurements [1] and reactor period analysis [2–4].
Furthermore, for several key reactor coefficients, such as kinetics parameters, sensitivities
to nuclear and material data, or perturbations [5–10], bilinear forms involving both the
direct and the adjoint fundamental eigenfunctions are required. The most common bases
for eigenfunction expansions are those related to the k-eigenvalues and to the α-eigenvalues,
respectively [11]. Calculations of dominant k or α eigenvalues/eigenfunctions try to assess
the asymptotic reactor behaviour, each with a distinct point of view: the former basically
determines the shape of the neutron population after a large number of fission generations,
whereas the latter after a sufficiently long time. When the reactor is exactly critical, i.e.,
for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases
coincide, as expected on physical grounds [11]. However, for systems far from criticality
the fundamental k and α eigenmodes show discrepancies and (with the possible exception
of very simple cases involving single-speed transport) are not related to each other in
any trivial manner [11,12]. Such discrepancies have been observed even for very small
deviations from criticality [13]. Since both direct and adjoint eigenmodes are involved
in the calculation of key reactor parameters, the investigation of the behaviour of the
eigenfunctions might shed some light on the behaviour of such parameters at and close to
the critical point.

In the context of Monte Carlo simulation, the analysis of the prompt direct fundamen-
tal k and α-eigenmodes (neglecting delayed neutron contributions) has been previously
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carried out for a set of sub- and super-critical systems based on homogeneous and het-
erogeneous cores with fast and thermal spectra [12]. In this work, we will revisit and
extend these findings on some benchmark configurations, namely Godiva-like spheres
inspired by the seminal work of D.E. Cullen [12] and the CROCUS core [14,15], with a
twofold aim. First, we will explicitly include the effects of delayed neutrons, which have
been originally neglected for the sake of simplicity. We will thus determine whether the
presence of delayed contributions has an impact on the shape of the eigenfunctions, and
in particular whether the discrepancies between k and α-eigenmodes increase or decrease.
Then, we will examine the behaviour of the fundamental adjoint eigenmodes for both k
and α-eigenvalue problems, whose comparison has not been addressed so far, to the best
of our knowledge.

2. Tools and Methods

For the numerical simulations presented in the following, we have used the develop-
ment version of TRIPOLI-4® [16]. For direct k-eigenvalue calculations, the fundamental
mode ϕk0 satisfying

Lϕk(r, Ω, E) =
1
k
[Fp ϕk(r, Ω, E) + ∑

j
Fd,j ϕk(r, Ω, E)], (1)

is computed by using the standard power iteration method [16]. Here L denotes the net
loss operator, Fp the prompt fission operator, Fd,j the delayed fission operator for precursor
family j, and the other notation is standard. For α-eigenvalue problems, in the form

α

υ
ϕα(r, Ω, E) + Lϕα(r, Ω, E) = Fp ϕα(r, Ω, E) + ∑

j

λj

λj + α
Fd,j ϕα(r, Ω, E)], (2)

in the development version of TRIPOLI-4® the fundamental mode ϕα0 is determined by us-
ing the α-k power iteration [17]. The α-k method was originally proposed for prompt decay
constants [18] and later extended to the general case with neutrons and precursors [2,17].
The basic idea is to iteratively search for the dominant α value that makes the α-eigenvalue
equation exactly critical with respect to a fictitious k-eigenvalue applied to the production
terms. For positive α, a “capture” cross section α/υ is taken into account while applying
a modified power iteration [12,18]. For negative α, the contribution −α/υ was originally
interpreted as a “production” term [12,18]. The standard implementation of this algorithm
has been however shown to be numerically unstable, possibly leading to abnormal termi-
nation: an improved algorithm that overcomes the limitations for the case of negative α
has been proposed [17], introducing a special “copy” operator (at the right hand side of
Equation (2)) that preserves particle balance between the power iteration cycles, namely

Fα =
x

dΩ′dE′δ(Ω−Ω′)δ(E− E′)υα
|α|

υ(E′)′
, (3)

with a multiplicity υα = 2. The operator Fα is compensated by a “production” cross section
–α/υ at the left hand side of Equation (2). The term υα can be interpreted as the average
number of (copy) neutrons produced by the α-production operator having a delta kernel.
Details concerning the implementation and the possible convergence issues for the case of
negative α are provided in [17]. Finally, the term λj/(λj + α), λj being the decay constant
for precursor family j, can be interpreted as a weight multiplier for the delayed neutron
yield, observing that the dominant α satisfies α0 > −minjλj [2,17].

Concerning the adjoint k-eigenmodes ϕ†
k , which satisfy

L† ϕ†
k(r, Ω, E) =

1
k
[F†

p ϕ†
k(r, Ω, E) + ∑

j
F†

d,j ϕ
†
k(r, Ω, E)], (4)
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in TRIPOLI-4® we have adopted the Iterated Fission Probability (IFP) method [19], by
closely following the strategy proposed in [5,6]. The introduction of the IFP method has
paved the way to obtaining the fundamental adjoint flux ϕ†

k0
for k-eigenvalue problems in

continuous-energy Monte Carlo simulations: the adjoint flux ϕ†
k0

is equated to the neutron
importance Ik, which can be then estimated by running a direct calculation [5,6]. The
neutron importance Ik is obtained by recording the descendants after M latent generations
for an ancestor injected into the system at coordinates r, Ω, E (neutrons are promoted to
the next generation by fission events). By building upon these ideas, we have recently
introduced a novel method to compute the fundamental adjoint flux ϕ†

α0
for α-eigenvalue

problems, which solves

α

υ
ϕ†

α(r, Ω, E) + L† ϕ†
α(r, Ω, E) = F†

p ϕ†
α(r, Ω, E) + ∑

j

λj

λj + α
F†

d,j ϕ
†
α(r, Ω, E), (5)

by resorting to a generalized version of IFP (G-IFP) [13]. The fundamental adjoint flux
ϕ†

α0
can be again equated to the neutron importance Iα, i.e., can be estimated by recording

the descendants after M latent generations for an ancestor injected into the system at
coordinates r, Ω, E. The only difference with respect to the regular IFP method is that for
α-eigenvalue problems additional events, other than fissions, may contribute to promoting
the neutrons to the next generation. For positive α, the additional term α/υ acts as a
sterile capture: neutrons can thus contribute to the importance only being promoted to
the next generation by prompt and delayed fission. However, for negative α, neutrons can
contribute to importance also via the α-production term, associated to the copy operator
with cross section −α/υ. In both cases, the weight of the delayed neutrons is assigned a
correction factor λj/(λj + α). For a thorough explanation of the G-IFP method, see [13].

3. Analysis of the Godiva-Like Spheres

In view of characterizing the behaviour of the direct and adjoint fundamental modes
for k and α-eigenvalue problems, we have selected two simple benchmark configurations,
both inspired from test-cases previously considered in the literature [12]. The first con-
figuration consists in a bare sphere of uranium, whose specifications are taken from [12]
(Problem I) and are very close to those of the standard Godiva benchmark [20]. In particular,
the radius of the sphere is equal to 8.7407 cm and the uranium isotopic composition (nor-
malized with respect to the uranium density) consists of 93.7695% atoms of U235, 5.2053%
atoms of U238 and 1.0252% atoms of U234. The system is spatially homogeneous, and the
neutron spectrum is fast. The second configuration is also taken from [12] (Problem III) and
corresponds to a sphere of uranium with equal radius and uranium isotopic composition,
surrounded by a thick water reflector: the system is spatially heterogeneous with a total
radius of 38.7407 cm and a strong thermal component. The water density is equal to
1 g/cm3 with 2 atoms of H1 and 1 atom of O16. For the sake of simplicity, we will call these
configurations Problem I and Problem III.

3.1. Description of the Benchmark Configurations

For both cases, starting from the specifications given in [12], we have adjusted the
uranium density in order to obtain slightly sub-critical and sightly super-critical configu-
rations, with the aim of examining the effects of slight deviations from criticality on the
shape of the direct and adjoint eigenmodes. The chosen values of uranium density for each
configuration are shown in Table 1.



J. Nucl. Eng. 2021, 2 135

Table 1. Uranium densities for benchmark configurations. Uranium isotopic mass fractions and
water properties are equal to those described in the reference [12].

Configuration ρU [g/cm3]

I sub-critical 18.6836
I super-critical 18.9085
III sub-critical 13.5676

III super-critical 13.8600

The simulation results displayed in the following have been obtained by resorting
to TRIPOLI-4®. The forward simulations are performed via the power iteration method
for the k-eigenvalue problem, and the α-k power iteration method for the α-eigenvalue
problem. The corresponding numerical simulation parameters are presented in Table 2. The
adjoint simulations are performed via the IFP method for the k-eigenvalue problem, and
the G-IFP method for the α-eigenvalue problem. The corresponding numerical simulation
parameters are presented in Table 3. All flux distributions have been scored into 281 energy
meshes. Nuclear data for our calculations have been taken from the JEFF3.1.1 library, where
all fissile isotopes have 8 families of precursors [21].

Table 2. Numerical simulation parameters for benchmark configurations: forward simulations.

Configuration Active Cycles Inactive Cycles Particles

I sub-critical 5 × 103 103 105

I super-critical 5 × 103 103 105

III sub-critical 2 × 103 2 × 103 104

III super-critical 2 × 103 (*) 2 × 103 104

(*) 5 × 103 for the α-simulation including delayed neutron contributions.

Table 3. Numerical simulation parameters for benchmark configurations: adjoint simulations.

Configuration Particles Latent Generations

I sub-critical 5 × 107 20
I super-critical 5 × 107 20
III sub-critical 5 × 109 5

III super-critical 5 × 109 5

3.2. Analysis of the Fundamental Eigenmodes
3.2.1. Problem I

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations
for Problem I by including and neglecting the delayed neutron contributions are given
in Tables 4 and 5, respectively. It is worth noting that the super-critical configuration
in Problem I becomes sub-critical when delayed neutron contributions are neglected in
the calculations. Moreover, the fundamental eigenvalue k0 is reduced by approximately
650 pcm when the delayed contributions are not considered. Concerning the α-eigenvalue
formulation, the absolute value of α0 is smaller than 1 s−1 by including delayed neutrons,
whereas the absolute value of this eigenvalue is larger than 105 s−1 when neglecting delayed
neutrons. Neglecting the presence of the delayed neutrons in this fast spectrum system
implies thus a decrease of the reactor period of approximately 5 orders of magnitude.

Table 4. Fundamental eigenvalues k0 for Problem I.

Configuration k0 [–],
with Delayed Contributions k0 [–], Prompt Fission Only

I sub-critical 0.99396 ± 5 × 10−5 0.98750 ± 4 × 10−5

I super-critical 1.00389 ± 6 × 10−5 0.99740 ± 6 × 10−5



J. Nucl. Eng. 2021, 2 136

Table 5. Fundamental eigenvalues α0 for Problem I.

Configuration α0 [s–1],
Including Precursors α0 [s–1], without Precursors

I sub-critical −1.1880 × 10−2 ± 2 × 10−6 −1.379 × 106 ± 1 × 103

I super-critical 3.025 × 10−1 ± 3 × 10−4 −4.339 × 105 ± 4 × 102

For illustration, the shapes of direct and adjoint eigenmodes ϕ
(†)
k0

and ϕ
(†)
α0 (with

and without delayed neutron contributions) for the sub-critical configuration and the
super-critical configuration of Problem I are shown in Figures 1 and 2, respectively. For
comparison, all curves have been normalized. Deviations due to the kind of eigenfunction
(either k or α) and to the presence of delayed contributions are clearly visible in the
adjoint distributions.
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In order to quantitatively assess these differences, in Figures 3 and 4 we show the ratios
between α- and k- eigenfunctions for the direct and adjoint problem, respectively. For the
direct eigenfunctions, deviations are overall rather small (see Figure 3). In the sub-critical
configuration, we have ϕα0

< ϕk0
in the fast region and vice-versa in the epithermal region,

both with and without delayed neutrons (Figure 3a). For the super-critical configuration,
the situation is different: in the fast region, we have ϕα0

< ϕk0
without delayed neutrons

and ϕα0
> ϕk0

with delayed neutrons; in the epithermal region the behaviour is inverted.
This is possibly due to the fact that in the super-critical configuration the sign of α0 changes
with or without delayed neutrons. In the thermal region, very few neutrons contribute
to the direct eigenfunctions (as expected from a fast neutron spectrum system), although
statistical uncertainty prevents from drawing solid conclusions.
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As for the adjoint eigenfunctions, deviations are somewhat stronger when delayed
neutrons are not considered (see Figure 4), especially in the resonance region. On the
contrary, when delayed neutron contributions are taken into account deviations of ϕ†

k0
from

ϕ†
α0

become much smaller. Overall, neglecting the presence of delayed neutrons leads to
ϕ†

α0
< ϕ†

k0
outside the resonance region and the difference between the two distributions is

larger for the more sub-critical configuration.
Direct and adjoint eigenmodes computed by including delayed neutrons show similar

distributions. In principle, the absolute value of α0 drops around 10−1 s−1, therefore the
term (α0/υ)ϕα0

is significantly reduced. Moreover, the weight multipliers for both the
k-delayed fission operator (1/k0) and the α-delayed fission operator λj/(λj + α0) are both
around the unit value. For this reason, the k- and the α- eigenvalue problems presented in
Equations (1) and (2) for the direct formulation and in Equations (4) and (5) for the adjoint
formulation would be close to each other.

3.2.2. Problem III

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations
for Problem III with and without the delayed neutron contributions are given in Tables 6
and 7, respectively. It is worth noting that similarly to Problem I the system described in
Problem III is sub-critical if delayed neutron contributions are neglected in the calculations.
Moreover, the fundamental eigenvalue k0 is reduced by approximately 700 pcm when the
delayed contributions are not considered. Concerning the α-eigenvalue formulation, the
absolute value of α0 is again smaller than 1 s−1 by including delayed neutrons, whereas the
absolute value of this eigenvalue is between 102 s−1 and 103 s−1 when neglecting delayed
neutrons. Neglecting the presence of the delayed neutrons in this thermal system implies a
decrease of the reactor period of approximately 3 orders of magnitude.

Table 6. Fundamental eigenvalues k0 for Problem III.

Configuration k0 [–],
with Delayed Contributions k0 [–], Prompt Fission Only

III sub-critical 0.9927 ± 2 × 10−4 0.9858 ± 2 × 10−4

III super-critical 1.0050 ± 2 × 10−4 0.9979 ± 2 × 10−4

Table 7. Fundamental eigenvalues α0 for Problem III.

Configuration α0 [s–1],
Including Precursors α0 [s–1], without Precursors

III sub-critical −1.1686 × 10−2 ± 7 × 10−6 −9.820 × 102 ± 9 × 10−1

III super-critical 4.71 × 10−1 ± 1 × 10−3 −1.945 × 102 ± 4 × 10−1

The shapes of the direct eigenmodes ϕk0
and ϕα0

(with and without delayed neutron
contributions) for the sub-critical configuration of Problem III are shown in Figure 5a; the
adjoint eigenmodes are also shown in Figure 5b. The direct and the adjoint distributions for
the super-critical configuration of the same problem are shown in Figure 6. The behaviour
of the adjoint eigenmodes shows noticeable differences with respect to what observed in
spatially large systems, i.e., MOX and UOX assembly configurations [19], where the thermal
component was higher and the fast component was lower as compared to Problem III. The
strong impact of the fast component in our example, and the milder impact of the thermal
component, can be justified by the fact that Problem III is strongly spatially heterogeneous,
with a fast spectrum localized in the fissile lump and a thermal spectrum localized in the
moderator. Due to normalization the amplitude of ϕ† shown in Figures 5 and 6 is smaller
in the thermal region and larger in the fast region if compared to the results obtained from
MOX and UOX assembly configurations. For comparison, all curves have been normalized.
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Slight but significant deviations due to the kind of eigenfunction (either k-or α-) and to the
presence of delayed contributions are again visible, especially for the adjoint fluxes.
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The corresponding ratios for the direct and adjoint eigenfunctions are displayed
in Figures 7 and 8, respectively. For the direct eigenfunctions, when delayed neutron
contributions are taken into account deviations are rather small (see Figure 7) for both the
sub- and super-critical configurations. However, it is possible to notice the presence of a
deviation between the k- and α-eigenfunctions: for the sub-critical configuration, we have
ϕα0

< ϕk0
for energy values larger than 0.6 MeV and ϕα0

> ϕk0
for energy values larger

between 10 keV and 0.6 MeV; for the super-critical configuration an opposite behavior is
noticeable in the same energy ranges. This inversion is justified by the transition from a
sub-critical to a super-critical system. For a sub-critical configuration, the k-eigenvalue
formulation hardens the energy spectrum by artificially increasing the amplitude of fission
operator by a factor 1/k0, whereas the α-eigenvalue formulation promotes the thermal



J. Nucl. Eng. 2021, 2 140

spectrum by the term α0/υ and at the same modifies the delayed fission operator by the
factor γ = λ/(α0 + λ). Observe that we have γ > 1 for negative α0 and γ < 1 for positive α0.
The presence of delayed neutrons shifts the behaviour where ϕα0

< ϕk0
towards 0.6 MeV

which is around the average emission energy for delayed neutrons [22]. According to
the α-eigenvalue formulation, the delayed fission operator is now rescaled by a factor
λ/(λ + α0), with λ = β/∑j(βj/λj) = 0.0768 ± 0.0006 s−1 for U235 [23]. This factor is still
smaller than 1/k0, hence ϕα0

is still smaller than ϕk0
at fast energy range. The symmetric

argument can be applied for the super-critical case.
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The ratio shown for energies between 10 keV and 20 MeV for the super-critical config-
uration seems smaller compared to the one computed for the sub-critical configuration.
This result is coherent with the former configuration being closer to the critical state (super
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critical configuration) with respect to the latter (sub-critical configuration). For energy
ranges smaller than 10 keV, no significant differences are visible.

On the contrary, for the simulations excluding delayed neutrons deviations become
larger: in the fast and epithermal region, we have ϕα0

< ϕk0
, whereas ϕα0

> ϕk0
in the thermal

region. Again, if only prompt neutrons are considered, the fundamental eigenmode ϕk0
is shifted towards higher energies for a sub-critical system due to the 1/k0 factor which
artificially increases the number of fissions. This behaviour is smoothed in the supercritical
configuration (which is sub-critical, if delayed contributions are neglected) due to the
system being closer to the critical state. As for the adjoint eigenfunctions, strong deviations
in the fast region (E > 0.1 MeV) are observed for the sub-critical configuration, when
delayed neutrons are not considered (see Figure 8). In all the other configurations, no
significant differences are visible.

3.3. Analysis of the Effective Kinetics Parameters

Based on the observed discrepancies between the fundamental k- and α-eigenmodes,
it would be interesting to assess which is the practical impact on the reactor parameters
that depend on these quantities. In this respect, a prominent example is represented by
the kinetics parameters, which are indeed bilinear forms depending on both the forward
and the adjoint eigenmodes. The expressions of the effective mean generation time Λeff(α ,k)

and the effective delayed fraction β
j
eff(α,k) respectively read

β
j
eff(α,k) =

< ϕ†
(α,k),

xj
d

4π Fj
d ϕ(α,k) >

< ϕ†
(α,k), Fϕ(α,k) >

, (6)

Λeff(α,k) =
< ϕ†

(α,k),
1
υ ϕ(α,k) >

< ϕ†
(α,k), Fϕ(α,k) >

. (7)

The kinetics parameters, in turn, influence the system reactivity, through the in-hour
(Nordheim) formula [11,24]. The static reactivity ρk and the dynamic reactivity ρα follow
from [11–13,24,25]

ρk =
k0 − 1

k0
, (8)

and

ρα = α0Λe f f ,α + ∑
j

α0β
j
eff,α

α0 + λj
. (9)

The static reactivity ρk depends only be the fundamental eigenvalue k0, whereas the
dynamic reactivity ρα requires the computation of Λe f f ,α and β

j
e f f ,α in addition to the

fundamental eigenvalue α0. The IFP method and the G-IFP method allow the computation
of the bilinear forms of the kind < ϕ†

k , Aϕk > and < ϕ†
α, Aϕα > respectively, given a generic

operator A. Both k and α weighted effective kinetics parameters have been estimated by
resorting the methods implemented in the development version of TRIPOLI-4® [7].

The effective kinetics parameters estimated for Problem I are shown in Tables 8 and 9
for the sub-critical configuration. Values for βeff weighted according to the k-formulation
are statistically compatible to those weighted according to the α-formulation. Simulation
parameters for the evaluation of these parameters are the same as those shown in Table
2, estimated by considering 20 latent generations. A slight difference is observed in the
values of Λeff, whereas a relatively larger difference is observed between dynamic and
static reactivity. The latter deviation may be justified by the fact that the dynamic reactivity
ρα depends on the eigenfunction distributions integrated for the estimation of Λeff,α and
βeff,α (Equation (9)), whereas the static reactivity ρk only depends on the fundamental
eigenvalue k0. Significant differences are observed for both reactivity and effective mean
generation time values when only prompt neutrons are considered. In this case, the
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difference on the adjoint eigenmodes from Figure 4a plays a significant role in weighting
the kinetics parameters.

Table 8. Effective kinetics parameters of Problem I, sub-critical configuration including
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −669 ± 5 −608 ± 6
Λeff [ns] 5.773 ± 0.003 5.728 ± 0.002

βeff [pcm] 644 ± 2 645 ± 2
β1

eff [pcm] 23.5 ± 0.1 23.5 ± 0.4
β2

eff [pcm] 90 ± 0.6 90.9 ± 0.8
β3

eff [pcm] 66.8 ± 2 66.4 ± 0.7
β4

eff [pcm] 128.7 ± 0.9 128 ± 1
β5

eff [pcm] 198 ± 1 200 ± 1
β6

eff [pcm] 63.2 ± 0.7 63.1 ± 0.7
β7

eff [pcm] 58 ± 0.7 56.2 ± 0.6
β8

eff [pcm] 15.9 ± 0.4 16.6 ± 0.3

Table 9. Effective kinetics parameters of Problem I, sub-critical configuration without
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −6289 ± 50 −1266 ± 4
Λeff [ns] 45.6 ± 0.3 5.728 ± 0.002

The results obtained from the super-critical configuration of the same problem are
shown in Tables 10 and 11. The system including delayed neutrons is super-critical and all
kinetics parameters are statistically compatible. Conversely, a non negligible discrepancy
is still noticeable between static and dynamic reactivities for the configuration without
delayed contributions. Overall, minimal differences have been found between direct
and adjoint eigenmodes according to the k- and the α-eigenvalue formulations, which is
mirrored in the small discrepancies observed in the effective kinetic parameters.

Table 10. Effective kinetics parameters of Problem I, super-critical configuration including
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] 409 ± 9 388 ± 6
Λeff [ns] 5.654 ± 0.002 5.675 ± 0.002

βeff [pcm] 643 ± 5 644 ± 2
β1

eff [pcm] 20 ± 2 23.8 ± 0.4
β2

eff [pcm] 93 ± 3 91.1 ± 0.8
β3

eff [pcm] 68 ± 2 65.5 ± 0.7
β4

eff [pcm] 125 ± 2 128.3 ± 0.9
β5

eff [pcm] 201 ± 2 200 ± 1
β6

eff [pcm] 61.4 ± 0.8 60.9 ± 0.7
β7

eff [pcm] 57.6 ± 0.7 57 ± 0.6
β8

eff [pcm] 17.1 ± 0.4 16.9 ± 0.3

Table 11. Effective kinetics parameters of Problem I, super-critical configuration without
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −247.2 ± 0.4 −261 ± 6
Λeff [ns] 5.698 ± 0.002 5.677 ± 0.002
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For Problem III, the effective kinetics parameters computed for the sub-critical config-
uration are shown in Tables 12 and 13. The results from the simulation including delayed
contributions shows minimal discrepancies for the values of Λeff and βeff, whereas a clear
difference is found between ρk and ρα. Conversely, the differences in the eigenmode distri-
butions from Figure 7and Figure 8 strongly influence the parameters obtained from the
simulation without delayed neutrons.

Table 12. Effective kinetics parameters of Problem III, sub-critical configuration including
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −582 ± 10 −735 ± 20
Λeff [µs] 12.62 ± 0.05 12.71 ± 0.05

βeff [pcm] 704 ± 7 706 ± 7
β1

eff [pcm] 25.4 ± 0.4 24 ± 1
β2

eff [pcm] 97 ± 2 97 ± 2
β3

eff [pcm] 74 ± 3 72 ± 2
β4

eff [pcm] 134 ± 3 144 ± 3
β5

eff [pcm] 223 ± 5 223 ± 4
β6

eff [pcm] 70 ± 2 65 ± 2
β7

eff [pcm] 63 ± 2 63 ± 2
β8

eff [pcm] 19 ± 1 18 ± 1

Table 13. Effective kinetics parameters of Problem III, sub-critical configuration without
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −1658 ± 7 −1437 ± 20
Λeff [µs] 16.88 ± 0.06 12.79 ± 0.05

The parameters describing the super-critical configuration of Problem III are shown in
Tables 14 and 15. The presence of delayed neutrons and the proximity to the critical state
leads to statistically compatible values of the kinetics parameters. The results obtained
from the simulation including only prompt neutrons show minimal differences for Λeff
values, a slightly larger discrepancy is found between static and dynamic reactivity.

Table 14. Effective kinetics parameters of Problem III, super-critical configuration including
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] 478 ± 40 496 ± 20
Λeff [µs] 12.16 ± 0.04 12.21 ± 0.04

βeff [pcm] 681 ± 20 711 ± 7
β1

eff [pcm] 22 ± 7 28 ± 1
β2

eff [pcm] 97 ± 10 97 ± 2
β3

eff [pcm] 77 ± 8 73 ± 2
β4

eff [pcm] 132 ± 6 138 ± 3
β5

eff [pcm] 215 ± 6 232 ± 4
β6

eff [pcm] 65 ± 3 62 ± 2
β7

eff [pcm] 61 ± 2 62 ± 2
β8

eff [pcm] 18 ± 1 20 ± 1
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Table 15. Effective kinetics parameters of Problem III, super-critical configuration without
delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −252 ± 1 −213 ± 20
Λeff [µs] 12.93 ± 0.05 12.29 ± 0.05

In conclusion, we have investigated the effective kinetics parameters related to the
Godiva-like benchmark problems. As expected, the differences between k- and α- eigen-
mode distributions are mirrored in the discrepancies between the corresponding kinetics
parameters. Overall, the reactivity ρ is more affected by the choice of the eigenvalue
formulation than the other kinetics parameters Λeff and βeff.

The kinetics parameters and the associated reactivities are crucial for the control and
the safety of nuclear reactors. A comparison with existing measurements (which typically
involve neutron noise detection combined with the application of a fitting procedure based
on a formulation of the in-hour equation) might help in discriminating whether the k
or a formulations have a prominent advantage over each other for the interpretation of
these parameters.

4. Analysis of the Crocus Benchmark

In order to take into account a more realistic configuration, and ascertain whether
the conclusions reached in the previous section hold true for larger reactor cores, in this
section we will consider two configurations of the CROCUS critical facility, operated at
the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Thanks to its detailed
description and careful measurements, the CROCUS core has been selected as an interna-
tional benchmark for reactivity, kinetics parameters and reactor period calculations [14,15].
CROCUS is an open-tank type zero-power reactor, characterized by two fuel regions and
moderated by light water. A radial section of this reactor is shown in Figure 9: the outer
fuel rods (green) are composed of metallic uranium at 0.947 wt% 235U/U with 2.917 cm
pitch, whereas the inner fuel rods (orange) are composed by UO2 at 1.806 wt% 235U/U
with 1.837 cm pitch. Details on the number and positions of these fuel rods are given in
reference [15]. The core can be modeled as a cylinder with a diameter of about 60 cm and a
height of 100 cm. The critical state of the system is controlled by the level of light water
filling the reactor from the bottom cadmium plate. The critical configuration is achieved at
a water level of 91.66 cm.
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Figure 9. Radial section of the CROCUS reactor obtained with TRIPOLI-4®. The inner fuel rods
(UO2, orange) and the outer fuel rods (metallic U, green) are moderated by light water (blue). The
red regions denotes the 14 fuel rod positions defined for the flux distribution [15].
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A preliminary comparison for this facility between fundamental α-eigenpairs and
time dependent calculations has been carried out in [26]. Moreover, the kinetics parameters
of the CROCUS core for the k-eigenvalue formulation has been previously computed in [4]
and the associated reactivity was examined in [27]. In the following, we will investigate
the behaviour of the fundamental forward and adjoint modes of the k and α formulations
for this core, and we will then examine the impact of their respective shapes on the kinetics
parameters and on the reactivity. For this purpose, we will consider two sub-critical
configurations of the reactor, both obtained by lowering the water level. Configuration H1
is characterized by a water level equal to 90.8 cm, which induces a slightly sub-critical state.
Configuration H2 is characterized by a water level equal to 80 cm, which corresponds to
a more sub-critical condition. The fundamental eigenmodes will be computed by using
TRIPOLI-4® over 111 energy meshes and along 14 fuel pin positions, from the core center
to the outer region, denoted by the red rectangular regions in Figure 9. The number of
cycles and the particles per cycle simulated for these configurations are listed in Table 16
for the forward simulations and in Table 17 for the adjoint simulations.

Table 16. Numerical simulation parameters for CROCUS configurations during forward simulations.

Configuration Active Cycles Inactive Cycles Particles

H1 5 × 103 5 × 103 2 × 104

H2 5 × 103 5 × 103 2 × 104

Table 17. Numerical simulation parameters for CROCUS configurations during adjoint simulations.

Configuration Particles Latent Generations

H1 2 × 107 20
H2 2 × 107 20

4.1. Analysis of the Fundamental Eigenmodes

The fundamental eigenvalues k0 and α0 computed in the corresponding simulations
for H1 and H2 configurations of the CROCUS reactor (with and without precursor contribu-
tions) are given in Tables 18 and 19, respectively. As expected, the computed values show a
slight sub-critical level for configuration H1 and a larger sub-critical state for configuration
H2. According to the results obtained from the k-eigenvalue formulation, the criticality
level of both configurations decreases by approximately 780 pcm when delayed neutrons
are neglected. Concerning the α-eigenvalue formulation, the absolute value of α0 is smaller
than 1.2 × 10−2 s−1 by including delayed neutrons, whereas the absolute value of this
eigenvalue is larger than 102 s−1 for the simulation without precursor contributions.

Table 18. Fundamental eigenvalues k0 for H1 and H2 configurations of the CROCUS reactor.

Configuration k0 [–],
with Delayed Contributions k0 [–], Prompt Fission Only

H1 0.9995 ± 1 × 10−4 0.9918 ± 1 × 10−4

H2 0.9919 ± 1 × 10−4 0.9839 ± 1 × 10−4

Table 19. Fundamental eigenvalues α0 for H1 and H2 configurations of the CROCUS reactor.

Configuration α0 [s–1],
Including Precursors α0 [s–1], without Precursors

H1 −5.97 × 10−3 ± 2 × 10−5 −1.711 × 102 ± 2 × 10−1

H2 −1.1994 × 10−2 ± 3 × 10−6 −3.336 × 102 ± 2 × 10−1
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The shapes of direct eigenmodes ϕk0
and ϕα0

(with and without delayed neutron
contributions) are shown as a function of energy (Figure 10) and of the fuel pin position
(Figure 11) for H1 (a) and H2 (b) configurations. The adjoint eigenmodes are shown as a
function of the fuel pin position in Figure 12. All curves have been normalized. No major
differences can be easily spotted in these figures, so that we have computed the ratios
ϕα0

/ϕk0
and ϕ†

α0
/ϕ†

k0
in order to investigate possible discrepancies.
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Figure 10. Direct fundamental eigenmodes of the CROCUS reactor as a function of the energy, H1 (a) and H2 (b)
configurations according to the α- (blue) and k- (red) eigenvalue formulations, with (squares) and without (circles)
precursor contributions.
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Figure 13 shows the ratios of the direct fundamental eigenmodes in the energy do-
main. The results obtained for configuration H1 (Figure 13a) are similar to those previously
discussed for the Problem III of the benchmark configurations. When delayed neutrons
are considered, no differences are visible between ϕk0

(E) and ϕα0
(E). This is mainly due to

the system reactivity being close to critical (about −50 pcm, as shown in Table 18): the k
and α formulation are supposed to be very close to each other in this regime. If precursors
are disregarded in the simulation, for this configuration the fundamental k-eigenmode is
slightly different from the fundamental α-eigenmode: a shift towards high energy values is
observed. The same behaviour is found for the H2 configuration (Figure 13b), character-
ized by a larger effect due to a larger sub-critical level with respect to the previous case
(about −1600 pcm, as shown in Table 18). The effect of precursors is clearly visible for
this configuration: the k-eigenmode displays significant discrepancies with respect to the
α-eigenmode towards high energies for this sub-critical system, but ϕα0

(E) > ϕk0
(E) only

for E > 0.6 MeV, which is again similar to the findings of the Problem III configuration. Pre-
cursor contributions minimize the discrepancies between the two eigenvalue formulations
and the delayed spectra move the threshold for ϕα0

(E) > ϕk0
(E) at higher energy.

For the sake of completeness, we show the ratios of these eigenfunctions as a func-
tion of the fuel pin positions in Figure 14 for the direct formulation and in Figure 15
for the adjoint formulation. Overall, the behaviour of these two eigenmodes is similar:
within uncertainty limits, no major differences can be detected with respect to the spatial
coordinate.

4.2. Analysis of the Effective Kinetics Parameters

The effective kinetics parameters have been computed for the two CROCUS con-
figurations by using the IFP and G-IFP of TRIPOLI-4®. Table 20 shows the parameters
computed for the H1 configuration with precursor contributions: the results obtained
for both eigenvalue formulations are statistically compatible. As expected, the proximity
to the critical level of this configuration implies very close values of the k-weighted and
α-weighted effective kinetics parameters. Similar results are found in Table 21 by neglecting
precursor contributions.
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Table 20. Effective kinetics parameters for the H1 configuration including delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −73 ± 2 −50 ± 10
Λeff [µs] 47.69 ± 0.03 47.69 ± 0.03

βeff [pcm] 762 ± 4 760 ± 5
β1

eff [pcm] 22.3 ± 0.6 23.4 ± 0.8
β2

eff [pcm] 109 ± 2 113 ± 2
β3

eff [pcm] 66 ± 1 62 ± 1
β4

eff [pcm] 141 ± 2 141 ± 2
β5

eff [pcm] 249 ± 3 245 ± 3
β6

eff [pcm] 81 ± 2 83 ± 2
β7

eff [pcm] 68 ± 1 67 ± 1
β8

eff [pcm] 26.5 ± 0.8 26 ± 0.8



J. Nucl. Eng. 2021, 2 149
J. Nucl. Eng. 2021, 2, FOR PEER REVIEW 19 
 

 

 
(a) (b) 

Figure 15. Ratios 
0

†
αϕ /

0

†
kϕ of the CROCUS reactor as a function of the fuel pin positions, H1 (a) and H2 (b) configurations with (red 

squares) and without (blue circles) precursor contributions. 

4.2. Analysis of the Effective Kinetics Parameters 
The effective kinetics parameters have been computed for the two CROCUS config-

urations by using the IFP and G-IFP of TRIPOLI-4®. Table 20 shows the parameters com-
puted for the H1 configuration with precursor contributions: the results obtained for both 
eigenvalue formulations are statistically compatible. As expected, the proximity to the 
critical level of this configuration implies very close values of the k-weighted and α-
weighted effective kinetics parameters. Similar results are found in Table 21 by neglecting 
precursor contributions. 

The effective kinetics parameters of the H2 configuration with precursor contribu-
tions are shown in Table 22. A discrepancy is observed between the static and the dynamic 
reactivity, whereas the average values of all the other kinetics parameters are within one 
standard deviation for the two eigenvalue formulations. Table 23 shows the parameters 
obtained when neglecting precursor contributions: no significant discrepancies are ob-
served in the computed values. 

Table 20. Effective kinetics parameters for the H1 configuration including delayed contributions. 

Parameters † ,αϕ< • >  † ,kϕ< • >  

ρ [pcm] −73 ± 2 −50 ± 10 
Λeff [μs] 47.69 ± 0.03 47.69 ± 0.03 
βeff [pcm] 762 ± 4 760 ± 5 
1
effβ  [pcm] 22.3 ± 0.6 23.4 ± 0.8 
2
effβ  [pcm] 109 ± 2 113 ± 2 
3
effβ  [pcm] 66 ± 1 62 ± 1 
4
effβ  [pcm] 141 ± 2 141 ± 2 
5
effβ  [pcm] 249 ± 3 245 ± 3 
6
effβ  [pcm] 81 ± 2 83 ± 2 
7
effβ  [pcm] 68 ± 1 67 ± 1 
8
effβ  [pcm] 26.5 ± 0.8 26 ± 0.8 

Figure 15. Ratios ϕ†
α0

/ϕ†
k0

of the CROCUS reactor as a function of the fuel pin positions, H1 (a) and H2 (b) configurations
with (red squares) and without (blue circles) precursor contributions.

Table 21. Effective kinetics parameters for the H1 configuration without delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −824 ± 1 −827± 10
Λeff [µs] 48.15 ± 0.03 48.11 ± 0.03

The effective kinetics parameters of the H2 configuration with precursor contributions
are shown in Table 22. A discrepancy is observed between the static and the dynamic
reactivity, whereas the average values of all the other kinetics parameters are within one
standard deviation for the two eigenvalue formulations. Table 23 shows the parameters ob-
tained when neglecting precursor contributions: no significant discrepancies are observed
in the computed values.

Table 22. Effective kinetics parameters for the H2 configuration including delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −723 ± 10 −822 ± 10
Λeff [µs] 48.06 ± 0.03 48.01 ± 0.03

βeff [pcm] 763 ± 5 766 ± 5
β1

eff [pcm] 23.2 ± 0.2 22.2 ± 0.7
β2

eff [pcm] 113 ± 2 113 ± 2
β3

eff [pcm] 64 ± 1 66 ± 1
β4

eff [pcm] 140 ± 2 143 ± 2
β5

eff [pcm] 247 ± 3 251 ± 3
β6

eff [pcm] 82 ± 2 82 ± 2
β7

eff [pcm] 68 ± 2 66 ± 1
β8

eff [pcm] 24.8 ± 0.9 24 ± 0.8

Table 23. Effective kinetics parameters for the H2 configuration without delayed contributions.

Parameters <ϕ†
α, • > <ϕ†

k, • >

ρ [pcm] −1621 ± 2 −1638 ± 10
Λeff [µs] 48.59 ± 0.03 48.39 ± 0.03
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5. Conclusions

Inspired by the analysis originally proposed by D. E. Cullen [12], we have applied
Monte Carlo methods for the estimation of k and α fundamental eigenmodes. We have
extended the findings discussed in [12] in two directions, by addressing the evaluation of
the fundamental adjoint eigenmodes and the influence of precursor contributions. Addi-
tional information regarding the discrepancies between the two eigenvalue formulations
was found by assessing the effective kinetics parameters weighted by the k- or by the α-
eigenmodes. We have focused our attention on the analysis of two Godiva-like benchmark
configurations and the CROCUS reactor. In this way, we have explored thermal and fast
spectra, homogeneous and heterogeneous media, simplified and realistic systems.

Significant, albeit globally small, differences have been detected, as expected on
physical grounds based on previous investigations. In particular, we have recovered the
same behaviour previously analyzed [12] in the energy domain for the distribution of the
direct fundamental eigenfunctions ϕk0

and ϕα0
, and we have found similar discrepancies in

the corresponding adjoint fundamental distributions ϕ†
k0

and ϕ†
α0

. Moreover, the presence
of precursors has a non-trivial influence on the eigenfunctions, and this impact has been
carefully examined for each configuration. Overall, the presence of precursors reduces the
discrepancies between the two eigenmodes.

As a general remark, based on the configurations investigated here, it seems that
the discrepancies between the k- and α-eigenfunctions are enhanced by the presence of
strong spatial heterogeneity, such as for a core surrounded by a thick moderator/reflector.
In this case, the system will be characterized by multiple time scales (as shown in [12]),
related to the different times required by the neutrons to explore the multiplying and the
diffusing region. Then, it appears that the α-eigenvalue formulation is more sensitive
to these different time scales than the k-eigenvalue formulation, which is coherent with
α being related to the time behaviour of the system and k being related to the fission
generation behavior. These discrepancies on the eigenmodes are mirrored in the kinetics
parameters and on the reactivity. In this respect, it is interesting to remark that the CROCUS
reactor can be basically considered as a homogeneous system, with minimal discrepancies
between the α and k formulations.

An application related to the effective kinetics parameters is the estimation of the
reactor period and the sub-criticality level of the system. Both quantities can also be
measured during experiments by the pulsed neutron source method [1] and reactor noise
analysis methods [2,4]. The choice of the optimal adjoint weighting function (ϕ†

α or ϕ†
k )

in order to compare the results computed from numerical simulations to those obtained
from measurements depends on the procedure and the techniques adopted during the
experiment. Moreover, mixing α and k weighted kinetics parameters can be considered for
the estimation of α0 and ρ [28].
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