Journal of

Nuclear Engineering

Article

SCONE: A Student-Oriented Modifiable Monte Carlo Particle
Transport Framework

Mikolaj Adam Kowalski *

check for

updates
Citation: Kowalski, M.A.; Cosgrove,
P.,; Broman, J.; Shwageraus, E.
SCONE: A Student-Oriented
Modifiable Monte Carlo Particle
Transport Framework. J. Nucl. Eng.
2021, 2, 57-64. https://doi.org/
10.3390/jne2010006

Academic Editor: Maurizio Angelone

Received: 23 September 2020
Accepted: 4 March 2021
Published: 8 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Paul Cosgrove), Jakob Broman and Eugene Shwageraus

Engineering Department, University of Cambridge Trumpington St., Cambridge CB2 1PZ, UK;
pmc55@cam.ac.uk (P.C.); jgb45@cam.ac.uk (J.B.); es607@cam.ac.uk (E.S.)
* Correspondence: mak60@cam.ac.uk

Abstract: Over the last decade, the importance of the Monte Carlo as a neutron transport calculation
method has greatly increased. This paper describes a Monte Carlo particle transport framework
SCONE, which aims to provide with easy-to-learn environment for graduate students to learn about
Monte Carlo methods and explore new ideas. The paper lists the steps taken to enhance new user
experience of SCONE and briefly discuses how the architecture supports its goals. The current
version of the code is compared against Serpent and shown to provide with sufficient accuracy to be
used for teaching and proof-of-concept applications.

Keywords: Monte Carlo; neutron transport; Fortran

1. Introduction & Motivation

In this paper, we describe a new Monte Carlo particle transport code under devel-
opment in Nuclear Energy Research Group at the University of Cambridge. It is called
Stochastic Calculator Of Neutron Transport Equation (SCONE) and it is designed to be
an accessible Monte Carlo particle transport environment for graduate students, which
can be used in teaching and to carry out research projects that study new approaches. For
this reason the priority when writing SCONE is not placed on the performance (which
is the usual focus in production-level Monte Carlo codes), but on modifiability and ease
of learning. It is planned to be released as an open source and used for teaching at the
Engineering Department of University of Cambridge.

The goal of this paper is to describe the features of SCONE, that help it to realise its
goal of simplicity and modifiability. Given that SCONE is still in its early development and
very limited experience of students interacting with it has been accumulated, the discussion
is largely a speculation often based on personal experience of the authors and anecdotal
information gathered from code development discussion fora such as Stack Overflow.
Nevertheless the discussion provides the justification for the design choices. It may also
include some Fortran-specific concepts. The explanation for these can be found in Fortran
Standard [1]. A short section that compares predictions of SCONE against Serpent [2] is
also included.

2. Architecture
2.1. High-Level Architectural Overview

Figure 1a shows the main sections of the code. They are grouped into three distinct
blocks: Databank, Sampler and Estimator. This is an alternative high-level decomposition
to the Physics-Geometry-Tallies structure presented in [3] (Figure 1b). Its main difference
is that it focuses on the coupling between different sections rather than on their function
during particle transport. The arrows in Figure 1a are meant to represent the direction
of coupling between blocks. Databank contains all global information about the problem
being solved. That includes nuclear data, material compositions and geometry layout.
Its main feature is that during particle transport it is accessed in read only fashion. It

J. Nucl. Eng. 2021, 2, 57-64. https:/ /doi.org/10.3390/jne2010006

https://www.mdpi.com/journal /jne

https://www.mdpi.com/journal/jne
https://www.mdpi.com
https://orcid.org/0000-0003-3940-7767
https://orcid.org/0000-0003-2829-6299
https://orcid.org/0000-0002-7309-4920
https://doi.org/10.3390/jne2010006
https://doi.org/10.3390/jne2010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jne2010006
https://www.mdpi.com/journal/jne
https://www.mdpi.com/2673-4362/2/1/6?type=check_update&version=2

J. Nucl. Eng. 2021, 2

58

is not however immutable as in order to avoid needless searches of energy grid and
interpolation of reaction cross-sections some caching mechanism needs to be implemented.
Thus, elements in databank may have internal state, that significantly influences latency
of a query. The role of the Sampler is to perform the stochastic simulation of the particle
transport. It consists of collision and transport operators, which define the interaction
physics and transition algorithm (e.g., surface or delta tracking). The role of the Physics
Package is to define the calculation sequence. For instance, in the case of an eigenvalue
calculation it contains code that generates initial source and then runs appropriate number
of inactive and active cycles. Sampler by itself is not capable of producing any useful results.
It simply sends the events reports (via subroutine calls) to the estimator, which processes
them into desired quantities. Ideally Estimator would be independent of the Sampler, but
in practice most calculation sequences require access to some results. For example, many
source convergence acceleration or adaptive variance reduction schemes need access to the
accumulated results that are parameters of the lower-order representation of the system.
However, this Estimator-Sampler coupling is limited to only few selected tallies and is
much weaker then the Sampler-Estimator interaction via event reports. That is why it was
indicated with a thin arrow on Figure 1a.

Databank

Nuclear
Databases

’ : Geometry Movement * Which cell is particle in?
(REE G LT AsiEsiEr « What will it hit next?

Geometry

Geometry

* How far to boundary?

&

* What's on other side?
« Survival?

Collision Transport
Operator Operator

=

Physics / \ Tallies
. » How far to collision? - Tally events of interest
Tallies « Which nuclide?
» New E, direction?

Physics - Compute results
Package —p |- Compute statistics
« Secondaries? - Balances
» . ival? .
Sampler Estimator Survival’ Performance stats
(a) (b)

Figure 1. (a) An overview of High-Level structure of SCONE. Shows the main code sections and their decomposition into

Databank, Sampler and Estimator block. (b) Physics-Geometry-Tallies decomposition from [3].

2.2. Support of Novice User Experience

It is expected that SCONE will be mainly used by UK'’s postgraduate students in
Nuclear Engineering. Thus, it is reasonable to assume that upon a first introduction to the
framework, a student will be already familiar with basic programming concepts and aware
but not fully comfortable with more advanced ideas such as inheritance or polymorphism.
Therefore, the initial contact with the framework will be challenging to students as they will
be required not only to understand the specifics of SCONE, but also become comfortable
with object-orientation and relevant design patterns [4]. Fortunately there is a large number
of steps that can be taken to improve the initial user experience. They will be outlined in
the following paragraphs.

The simplest enhancement of new user experience is the organisation of the source
code directory into a folder structure, such that functionally related source files are kept in
the same folder. In SCONE the folder structure tries to convey the architecture. Starting
from the root directory, each major component of the code has an associated folder, e.g.,
“NuclearData” or “Geometry”. Then each such folder contains source files that specify the
abstract classes and data structures, that serve as an interface for this section of the code. A
more specific interfaces (abstract classes that inherit from the main interface class) as well
as implementations of the interfaces are places in sub-folders. Thus, a folder tree follows
the inheritance hierarchy. The main benefit of this approach is that it makes navigating
source code easy. A new user, instead of being presented with hundreds of files sorted

J. Nucl. Eng. 2021, 2

59

alphabetically, can see the high-level decomposition of the code into different abstractions
from the beginning.

Another decision to improve the readability of SCONE source code was to keep the
size of the source files small. At the time of writing only 4 source files out of 279 have
more then 1000 lines (which includes comments). The mean size of the file is 221.4 lines.
Each source file contains a single Fortran module or program. To avoid confusion, each
source file has the same name as the module it contains (e.g., module “RNG_class” is
in file “RNG_class.f90”). To improve clarity, no functions or types are used implicitly.
Every object or procedure needs to be explicitly imported using the Fortran “use..., only:
...” construct. This rule makes certain that it is straightforward to identify origin of every
component that is being used in a module. The exception from this rule is allowed when
importing modules that contain only large number of constants (e.g., ENDF MT numbers).
The content of every module is indicated by a suffix in its name: “_class” for class, “_inter”
for abstract class, “_func” for library of procedures and _mod”: for module acting as an
object (Singleton Design Pattern [4]).

The fact that the expected new user of SCONE will have a limited programming
experience makes the selection of Fortran as a programming language beneficial. Because
the student, will have to learn both the unfamiliar Monte Carlo techniques and the pro-
gramming language at the same time, it is important that all the relevant concepts are not
obfuscated by syntax. The Fortran use of verbose attributes such as “pointer” or “allo-
catable” communicate the meaning clearly even to people who are not well-acquainted
with Fortran syntax. It is also important that the MATLAB language shares many features
with Fortran, such as array syntax and column major order for indexing. This makes
transition to Fortran easier for engineering students who often have extensive experience
with MATLAB.

Consistent and exhaustive documentation of classes and procedures allows the user
to quickly determine the purpose and functionality of any given component. In SCONE,
documentation is based on the Google docstring style for Python code. A comment is
placed before the declaration of a derived-type or a procedure. In all cases it contains
the name of the component and a short paragraph that details it purpose. In a case
of a procedure (including class methods), the comment contains three sections. “Args”
section provides the description and intent (in, out or inout) of arguments as well as any
preconditions they must meet (e.g., an array of numbers may need to be sorted). “Errors”
section lists the behaviour of the procedure for invalid input or edge-cases. A function
also contains “Result” section that describes the output. Documentation comment for
classes contains “Public Members” and “Private Members” sections that provide short
description of each class member. In addition “Interface” section is included which lists all
available public methods with short description of their purpose. When documenting class,
inheritance poses a threat to the consistency of documentation if methods in each sub-class
have their own full documentation comment. Because, the same information about the
specification of the method would be replicated in multiple places, any change would
need to be propagated to all instances. This would make it likely that due to mistakes and
omissions, with time the descriptions of the same method would diverge. To prevent it, if
the method is overriding a super-class method only reduced documentation comment is
provided with basic information about the purpose of the method, name of a module that
contains full documentation comment and perhaps some sub-class specific information.
Full comment is provided only for the top-level declaration of the procedure.

The use of object-oriented architecture should help new users to learn the code.
SCONE is based on a plug-in architecture with every major code component such as
geometry or nuclear data being associated with an abstract class, which deferred (vir-
tual) methods provide access to all required functionality. The code components are also
associated with abstractions, which are simplified mental models of the sections of the
code. Every abstraction specifies how the section should behave under interaction through
procedure calls. Within this arrangement it is easy to provide multiple implementations of

v

J. Nucl. Eng. 2021, 2

60

the same functionality using the idea of polymorphism. All implementations are associated
with a sub-class of the abstract class and as long as all of them conform to the abstraction
they are completely interchangeable from the user perspective. In practical terms it means
that it is sufficient for a student to learn only the abstraction and the interface of the abstract
class in order to be able to use all implementations. Furthermore it is not necessary to
know anything about the details of the implementation. This significantly reduces mental
burden when learning the code. The plug-in architecture also makes the code modification
easier if the change can be made without changing the abstractions, because there is no
need to consider the interaction with all the other sections of the code. It is sufficient that
the modified version also implements the abstraction. However, plug-ins can also have a
detrimental effect and make the modification much more difficult if it is necessary to make
a change in an abstraction. Then it is necessary to ensure that all existing implementation
will conform to the new specification of the abstraction, which can require a significant
amount of work if the code is mature and multiple implementations are already created.
For that reason the design of the SCONE abstraction is crucial for the code usefulness as a
research tool. Furthermore, the reliance on abstract classes have a significant performance
penalty due to dynamic dispatch on procedure calls.

2.3. Tallies Module

In order to illustrate the principles followed in the design of SCONE, the architecture
of tallies will be discussed in detail. Their main purpose in the Monte Carlo particle
transport calculation is to calculate statistical estimates of the useful quantities from the
samples of various events obtained from the Sampler. This provides a natural interface
that can reduce dependency of the tallies on the rest of the code. The tally subroutines
need only to interact with a number of defined reports about certain events and require no
knowledge about how the reports were generated. In the extreme case it is even possible
that the generation of the reports and their processing may be performed by completely
different programs as was the case for 05R code [5]. However, in practice, some degree of
interaction between transport routine and tallies is required.

Figure 2 shows a sketch of class diagram of SCONE tallies section. Ordinary arrows
represent association, white diamond aggregation, black diamond composition and white
arrow generalisation (inheritance). The main goal of this arrangement was to contain
all the code that governs how event reports are converted into useful results inside a
single class (and thus single source file) of tallyClerk. The role of the interface for all tally
functionality is served by the tallyAdmin. Sampler send reports about the events by calling
the methods of the tallyAdmin, which then routes the reports to all tallyClerks that require
them. Furthermore, it is the responsibility of a tallyAdmin to allocate and release memory
for all clerks. Each tally admin contains a single instance of scoreMemory, which is a class
responsible for management of space for storing results and performing normalisation
and batching. The reason why the scoring logic contained in tallyClerks was decoupled
from storage space was to simplify the implementation of operations on all results such as
archiving into a file. Each tallyClerk is assigned with a contiguous section of scoreMemory
for its results by a tallyAdmin that provides the clerk with an address. Following types of
reports are available to a clerk to generate results:

¢ reportCycleStart: Event that indicates the beginning of a cycle. A reference to a particle
population with all normalisations applied that is to be transported over the course of
the cycle is provided as an argument.

¢ reportInColl: Event associated with a particle entering collision.

¢ reportOutColl: Event associated with the particle exiting collision. Argument list
contains cosine of scattering angle in LAB frame and MT number of the reaction the
particle has underwent.

¢ reportPath: Report that provides a path a particle has moved within confines of a
single material or cell with unique ID. Argument list contains the length of the path.

J. Nucl. Eng. 2021, 2

61

Particle Transport

Send Event Reports

e reportTrans: Report that indicates a transfer of a particle between collisions along a
straight line. Collision with a boundary condition is interpreted as a collision.

e reportHist: Report that indicates the end of a particle history. It includes an integer
flag that provides information about the fate of the particle (leaked, absorbed or lost).

e reportCycleEnd: Event that indicates the end of a particle transport cycle. A reference
to a particle population that is to be transported in the next cycle without any popula-
tion normalisation is provided. It also includes the value used to adjust secondary
particles generation rate.

scoreMemory

+ score(in val: double, in addr: integer)

+ closeCycle() tallyMap

+ map(in state: particleState): integer

tally Admin

tallyClerk tallyFilter

+ reportinColl(in data: collisionData)

+ reportCycleStart(in pop: particlePopulation)

+ reportCycleEnd(in pop: particlePopulation)
+ getResult(out res: tallyResult, in clerkMame: string)

+ reportinColl(in data: collisionData) + isPass(in state: particleState): boolean
+ reportCycleStart(in pop: particlePopulation) |«
+ reportCycleEnd(in pop: particlePopulation)
+ getResult{out res: tallyResult)

L]

tallyResponse

L]

0.1

T T *| + get(in p: particle): double

Linked-List
nredHs callisionClerk keffimplicitClerk

Figure 2. Sketch of class diagram of SCONE tally module. Style of arrows follows the Unified Modelling Language (UML).
Only a selection of the available class methods is shown to improve clarity.

Each report contains information about the particle together with its global position
in phase-space at key moments (e.g., start of history). It needs to be noted that the tally
architecture was created with batch statistics in mind. ScoreMemory is responsible for the
control over the batching process and it also contains the number of cycles in each batch.
Clerks that require non-standard normalisation (e.g., Fission Matrix tally) can enquire
whether the cycle currently ending requires accumulation of results using the “lastCycle”
method of scoreMemory. The coupling with the Sampler is achieved by using a family of
tallyResult classes. In “getResult” method each clerk may allocate provided allocatable
argument (an unique pointer) to a derived type created to store the clerk’s data. For
example, tallyResult for k-eff clerks store only two numbers related to expectancy and
standard deviation, while tallyResult for a Fission Matrix Clerk contains a matrix. By
default, clerks that do not implement coupling allocate tallyResult to a special null type
called noResult. This approach has a drawback of a significant overhead that may be
associated with the allocation of memory whenever result is requested.

In order to avoid needless reimplementation of common functionality, three class
families are available to every Clerk. tallyMap is responsible for mapping a particle global
position in phase-space to a bin. It contain method “map” that returns an index given
a particle state. If the particle state falls outside a range of a map, index 0 is returned.
Even though the results are mapped to a single index, maps can have multiple dimensions.
Information about the shape can be obtained from a tallyMap with “binArrayShape()”
method. Maps are represented in column-major order following Fortran convention. The
existence of tallyFilter, which given a particle state accepts or rejects the event, may be
considered redundant given that its functionality can be implemented using a tallyMap
composed of a single bin. However it can be used to restrict range of the accepted events
without changing the rank of a result array in output file and any scripts written for results
post-processing. For this reason it may prove useful during classroom demonstrations or
when investigating a new phenomena.

J. Nucl. Eng. 2021, 2

62

3. Verification

In order to verify the implementation of SCONE algorithms, a comparison with
Serpent [2] is shown for three benchmark problems. Since SCONE does not currently
support the unresolved resonances probabilities tables and bound thermal scattering, these
options were switched off in the reference Serpent calculation. The fast spectrum test
cases are taken from the NEA’s ICSBEP Critically Benchmark suite. Serpent input files
were obtained from Serpent Wiki [6]. The first case is the Jezebel sphere (PU-MET-FAST-
001), which is a simple metallic plutonium sphere. The Popsy case (PU-MET-FAST-006)
consists of a plutonium sphere surrounded by a natural metallic uranium reflector. For the
thermal spectrum, a 2D calculation of 17 x 17 MOX assembly with reflective boundary was
performed. The assembly contained fuel with three different levels of enrichment (4.3 wt%,
7.0 wt% and 8.3 wt%). The exact geometry and material specifications for the assembly
were taken from [7]. All calculation were performed on a single core with normalisation to
the fission rate of 100. The same ACE-formatted JEFF 3.1.1 nuclear data library was used
by both SCONE and Serpent. Every case was run with a population of 200,000 neutrons
and 500 active cycles. MOX and Popsy cases used 100 inactive cycles, while Jezebel used
only 20. For all cases Serpent used optimisation setting of 4, which is recommended for
small problems as it performs the most aggressive optimisation of run time at the expense
of memory consumption [6].

Table 1 compares the criticality predicted by Serpent and SCONE for the benchmark
cases. It is clear that there is good agreement between the predictions of two codes. The
only significant deviation by 69 pcm can be observed for the Popsy test case. The reason
for it has not yet been identified. Figures 3 and 4 reveals that the spectrum predicted by
SCONE is within standard deviation from the Serpent result for for both fast and thermal
spectrum cases. For the MOX case, SCONE executes about 32% slower than Serpent. The
reason is that the current version of SCONE lacks a mechanism to accelerate energy grid
searches such as unified energy grid or energy grid hashing. Thus, the runtime scales
approximately linearly with the number of nuclides in the problem. The significantly faster
performance of SCONE for the fast spectrum cases is unexpected. The use of different
optimisation setting in Serpent did not succeed in bringing the Serpent performance closer
to SCONE. By default Serpent calculates adjoint weighted kinetic parameters using iterated
fission probability (IFP) method. It likely that the extra overhead of IFP tallies is responsible
for the difference in performance in fast problems, where neutron histories are short.

Table 1. Comparison of runtime and predicted criticality for the benchmark cases between SCONE and Serpent.

Case SCONE k-eff SCONE Runtime [s] Serpent k-eff Serpent Runtime [s]
Jezebel 1.00015 £ 9 pcm 257 0.99999 £ 10 pcm 765

Popsy 1.00307 =11 pcm 3250 1.00376 11 pcm 5036

MOX 1.19871 &£ 6 pcm 9367 1.19872 &£ 6 pcm 7091

J. Nucl. Eng. 2021, 2

63

Jezebel Spectrum

Error [%]
[}

oo mﬂ
o " L "

T ; d =] |
Lo L M R R T L L PR S M|

10? 10t

Energy [MeV]

Error [%]
o
T

5

Popsy Core Spectrum
A e | 0 | e ey = | @uan{_:ihgziﬂ%w

2 2 " M | i

1073

: 10° 10t
Energy [MeV]

Figure 3. Error in flux spectrum for the fast benchmark cases. Grey region represents the extent of two standard deviations.

Error [%]
(=]

il

MOX Water Spectrum
(A T T Al

Energy [MeV]

MOX43 Pin Spectrum
T T

T R

10-10
2
— 1k
®
5 O
w 1k
S ALLE
10-10

10

Energy [MeV]

Figure 4. Error in flux spectrum for the MOX thermal benchmark case. Grey region represents the extent of two

standard deviations.

4. Conclusions & Further Work

When writing SCONE significant effort has been dedicated to support the new user
of the framework. Steps such as grouping source files in sub-folder stricture that follows
inheritance hierarchy, may seem trivial but applied consistently can have significant impact
on the readability of the code. Furthermore, the object oriented architecture can reduce
mental burden when making changes to the code by reliance on the abstractions for
the major code components. The discussion of the tallies architecture demonstrates that
it is possible to concentrate relevant code in a number of classes (tallyClerks), while
hiding the confusing but necessary operations in others (tallyAdmin and scoreMemory).
By comparison with Serpent it was shown that SCONE in its current version should
be accurate enough for the use in teaching and proof-of-concept studies of new Monte
Carlo approaches.

Current work is focused on parallelising the code using OpenMP, and preparing for
an open source release by removing gaps in the unit test coverage and documentation.
SCONE is likely to be released under MIT licence.

J. Nucl. Eng. 2021, 2 64

Author Contributions: Conceptualisation, M.A.K.; Methodology, M.A K.; Software, M.A.K,, P.C. and
J.B.; Writing-Original Draft Preparation, M.A K.; Writing-Review Editing P.C. and E.S.; Supervision,
E.S.; Funding Acquisition, E.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the UK Engineering and Physical Sciences Research Council
and David and Susan Hibbit Scholarship from Jesus Collage.

Data Availability Statement: SCONE is to available under MIT Licence at: https:/ /bitbucket.org/
Mikolaj_Adam_Kowalski/scone accessed on 2 March 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Information Technology—Programming Languages—Fortran—Part 1: Base Language; Technical Report ISO/IEC 1539-1:2010; Interna-
tional Organisation for Standardization: Geneva, Switzerland, 2010.

2. Leppénen, J.; Pusa, M,; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T. The Serpent Monte Carlo code: Status, development and
applications in 2013. Ann. Nucl. Energy 2015, 82, 142-150. [CrossRef]

3. Brown, EB. Fundamentals of Monte Carlo Particle Transport; Technical Report LA-UR-05-4983; Los Alamos National Labratory:
Los Alamos, NM, USA, 2020.

4. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley
Longman Publishing Co., Inc.: Boston, MA, USA, 1995.

5. Lux, I; Koblinger, L. Monte Carlo Particle Transport Methods: Neutron and Photon Calculations; CRC Press: Boca Raton, FL, USA,
1991.

6. Serpent Wiki. 2020. Available online: http://serpent.vtt.fi/mediawiki/index.php/Main_Page (accessed on 25 December 2019).

7. Benchmark Calculations of Power Distribution within Fuel Assemblies, Phase II: Comparison of Data Reduction and Power Reconstruction

Methods in Production Codes; Technical Report NEA /NSC/DOC(2000)3; Nuclear Energy Agency: Paris, France, 2000.

 https://bitbucket.org/ Mikolaj_Adam_Kowalski/scone
 https://bitbucket.org/ Mikolaj_Adam_Kowalski/scone
http://doi.org/10.1016/j.anucene.2014.08.024
http://serpent.vtt.fi/mediawiki/index.php/Main_Page

	Introduction & Motivation
	Architecture
	High-Level Architectural Overview
	Support of Novice User Experience
	Tallies Module

	Verification
	Conclusions & Further Work
	References

