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Abstract: Xylan is a macromolecule of industrial interest that can be solubilized from lignocellulosic
materials, such as sugarcane bagasse, which is a renewable source. However, the solubilization
methods of xylan need to be better developed for use in industrial applications. The main objective
of this study was to evaluate xylan solubilization methods with higher yields and purity by using
biomasses/fractions of sugarcane: leaf and stem, internode, node, and external fraction. Two
strategies were evaluated by applying diluted sodium chlorite, sodium sulfite, and hydrogen peroxide:
a delignification of the biomass before xylan solubilization; and the delignification of the solubilized
xylan for residual lignin removal. The delignification of the biomass before the xylan solubilization
enabled to identify material and specific conditions for yields higher than 90%. Residual lignin varied
from 3.14 to 18.06%, with hydrogen peroxide in alkaline medium partial delignification shown to be
effective. The delignification of xylan presented better results using diluted hydrogen peroxide, with
a reduction of 58.44% of the initial lignin content. The solubilized xylans were used as a substrate for
xylanase activities, resulting in higher activity than commercial xylan. In the delignification of the
biomasses, hydrogen peroxide was the reagent with better results concerning the yield, purity, and
solubility of the xylan. This reagent (diluted) was also better in the delignification of the solubilized
xylan, resulting in lower residual lignin content. The solubility and purity tests (low salt content)
indicated that the solubilized xylan presented characteristics that were similar to or even better than
commercial xylan.

Keywords: hemicellulose; delignification; xylanase activity; enzymatic substrate; sugarcane bagasse;
biomass heterogeneity

1. Introduction

Xylan is the main hemicellulose present in sugarcane bagasse. Sugarcane bagasse
consists of a lignocellulosic biomass that offers the advantage of being abundant in the
context of ethanol and sugar production [1]. Sugarcane bagasse comprises xylan, lignin,
and cellulose; the latter appearing in a high amount [2]. These components represent
around 90% of the dry mass of the bagasse; the remaining 10% consists of extractives
and ashes [3]. These macromolecules are highly organized in the plant cell wall, which
provides high recalcitrance for this biomass to be converted into bioethanol [4], and for
its macromolecules to be solubilized [1,5]. Xylan is an interesting polysaccharide to work
with as feedstock for several industrial products. However, some difficulties regarding its
solubilization from biomass need to be solved in the exploration of its potential.

The challenge of using biomass macromolecules to generate products with aggregate
value is due to the characteristics of carbohydrates, such as xylan, which are highly pro-
tected against degradation by microorganisms or enzymes and chemical treatment. This
resistance of the lignocellulosic material to the microorganism attack or the pretreatment is
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called recalcitrance [4,6]. Another factor that makes the conversion of the lignocellulosic
by biotechnological routes more difficult is its heterogeneity. By laying out the sugarcane
stem, it can be divided into several fractions, based on its morphology: external fraction
(containing the epidermis), node, and internode [7–9]. Among these fractions, the external
fraction has been shown to be the one with the most resistance to acid pretreatment. This
characteristic is related to the composition of this fraction, a fraction of tissue that is rigid
and dense in its extremity [10] with a high number of vascular bundles close to the epider-
mis [7]. The internode and the node—the less recalcitrant fractions—are mostly formed by
parenchyma storage cells [7] and, at a smaller proportion, vascular bundles, and the node
presents vascular bundles in a higher number and diameter than the internode [7].

Xylan solubilization (macromolecule) can be performed with a high yield from sugar-
cane bagasse [11,12], giant bamboo [13], and Eucalyptus [14]. However, the polysaccharide
presents some content of residual lignin, and there is possible salt presence, which would
come from the solubilization process (the neutralization step) [11,15]. Some studies sug-
gested that a delignification process of the biomass could result in xylan solubilization with
low lignin content [16–18]. Moreover, the delignification of solubilized xylan could be a
promising strategy that has not yet received its deserved attention. It is important to men-
tion that hemicellulose/xylan can be solubilized, producing oligomers such as xylooligosac-
charides (XOS) and xylose. For the purpose of xylan fragmentation/hydrolysis into XOS
and xylose, hydrothermal treatments (and acids) can be successfully applied [1,8,10,14].

The quality of hemicellulose could define its application and product generation. A
hemicellulose with high purity could be required for certain applications; however, impure
compounds such as lignin could be present with no effect on other products. The lignin–
carbohydrate complex makes it difficult to isolate hemicellulose, which shows residual
lignin [19]. Obtaining high-purity hemicellulose certainly makes the economic aspect unfea-
sible on an industrial scale for certain products. Moreover, the products from hemicellulose
could be evaluated according to the need for hemicellulose purity. Hemicelluloses have
been shown to produce gels, films, coatings, adhesives, gelling, stabilizing, and viscosity-
enhancing additives in food and pharmaceuticals [20]. In the energy context, hemicellulose
can be hydrolyzed into fermentable sugars for fermentation (ethanol) [21]. With a catalytic
approach, hemicellulose can be converted into intermediate compounds such as xylitol,
furfural, and levulinic acid used for the production of chemicals and polymers [19]. There-
fore, understanding the chemical compositions of the hemicelluloses and their impurities
could assist in improving its industrial applications.

Considering the problems discussed, this study aimed to evaluate two strategies of
xylan solubilization reducing residual lignin: delignifying the biomass before the xylan
solubilization and delignifying the solubilized xylan. In order to verify which strategy
would bring the greatest benefit, xylan yield, lignin content, and salt presence were moni-
tored. Complementarily, the xylan was evaluated as a substrate for enzymatic activity in
opposition to the commercial one. Enzymatic activity determination requires a great-quality
substrate. In the present context, xylan was evaluated as a substrate for endoxylanase
activity. Currently, a producer of xylan for use as a substrate for endoxylanase activity has
discontinued the commercial product. For this reason, a protocol for xylan production
focusing on the quality (i.e., the possibility of controlling the amount of contaminants)
is required.

2. Material and Methods
2.1. Sugarcane Bagasse and Sugarcane for Separating the Fractions

The sugarcane (leaf, stem, and bagasse) was supplied by the Sugarcane Technology
Center (CTC) in the city of Piracicaba-SP, Brazil. The stem fractions were separated into
external (containing the epidermis), internode, and node, as reported elsewhere [2,8]. The
separation was conducted manually, with a cut at 2–3 mm of the extremity to remove the
external fraction. The stem, free of the external fraction, was fractioned into node and
internode. The fractions were pressed to remove the saccharose, washed with distilled
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water, and dried in stoves at 50 ◦C. The samples were milled and selected, passing through
a 20-mesh sieve.

2.2. Delignification Strategies

Two strategies were evaluated: (i) a delignification of the sugarcane biomasses before
solubilizing the xylan with a hydrogen peroxide standard method [12]; (ii) a treatment
of the isolated xylan for delignification using sodium chlorite, hydrogen peroxide, and
sodium sulfite (Figure 1).
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Figure 1. Strategies for high-quality xylan production with partial biomass delignification (A) and
lignin removal from the solubilized xylan (B).

The delignification was conducted with specific reagents for lignin, such as sodium
chlorite, hydrogen peroxide, and sodium sulfite in an alkaline medium. The sodium chlorite
was compared to delignification processes [9], the peroxide to whitening the cellulosic
pulp [22], and the sulfite to biomass pretreatment [23]. The reactions occurred under
specific conditions for each reagent: sodium chlorite: 5, 10, and 20% (m/m) at 80 ◦C for 3 h,
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using 10 g of material, in a reactional volume of 200 mL in a liquid medium with deionized
water; hydrogen peroxide 5, 10, and 20% (m/m) at 25 ◦C for 4 h, also in the volume of
200 mL in liquid medium with deionized water; sodium sulfite 5, 10, and 20% (m/m) at a
temperature of 121 ◦C/30 min, in a volume of 200 mL in liquid medium with deionized
water. After the delignification processes, the samples were washed in running water until
the pH was neutral, and the solid part was dried in an oven at 50 ◦C.

The standard xylan solubilization (Item 2.3) was conducted with the partially delig-
nified biomasses. In the case of the delignification of the solubilized xylan, after the
application of the treatments, the samples were washed with ethanol following the same
methodology of xylan solubilization. Later, they were dried and washed for chemical
characterization. Regarding these strategies, the solubilization yield, mass recovery, and
residual lignin content were determined.

2.3. Xylan Solubilization

The xylan solubilization was conducted in triplicate with sugarcane fractions (leaf
and stem: internode, node, and external fraction), sieved fractions of bagasse (provided
by the industry), and with whole bagasse. The solubilization was also performed with the
biomass partially delignified. The solid–liquid proportion was 1:20, using 10 g (dry mass)
biomass in 200 mL of solution. The reaction was conducted with hydrogen peroxide in
concentrations of 6% and 3% (m/v), adding 5 mol/L sodium hydroxide, up to a pH 11.6.
The reaction volume was increased up to 200 mL with deionized water and shaken at
75 rpm, at 25 ◦C, for 4 h. After this period, the samples were neutralized with hydrochloric
acid 5 mol/L up to a pH between 5–6. After neutralization, the samples were oven heated
at 50 ◦C for concentration and volume reduction to around 1/3 to decrease the ethanol
needed in the precipitation step. The xylan was precipitated by adding 3 volumes of ethanol
95%. After approximately 24 h, the liquid fraction was separated from the precipitated
material (xylan), the supernatant was discarded, and a new wash was conducted with 70%
ethanol. This procedure was repeated three times in order to avoid the formation of salt in
the precipitated material. The precipitated material (xylan) was dried in an oven at 50 ◦C
for around 72 h [12]. The xylan solubilization yield was calculated based on the amount of
material solubilized in relation to the content of xylan in the raw biomass according to the
chemical composition.

2.4. Chemical Characterization of Xylan

The solubilized xylan was characterized by its chemical composition, hydrolyzing
about 300 mg of xylan and adding 3 mL of H2SO4 72% (m/m). The reaction occurred at
45 ◦C for 7 min and was interrupted by the addition of 84 mL of distilled water. This
mixture was autoclaved at 121 ◦C for 30 min [12]. The liquid content was filtered in a
porous plate filter n◦ 4, previously tared. The solid residue was washed with distilled
water and dried in an oven at 105 ◦C up to constant mass for determining the residual
lignin. The soluble fraction was used to determine the sugar and acetic acid contents by
liquid chromatography. The acid-soluble lignin content was determined by absorbance
measure in 205 nm. For the calculation of the soluble lignin concentration, an absorptivity
of 105 L/g.cm was used in this wavelength.

The concentrations of glucose, xylose, arabinose, and acetic acid were determined by
HPLC using a Bio-Rad Aminex HPX-87H (300 × 7.8 mm) column kept at 45 ◦C, a detector
of refraction beginning WATERS 2414, a mobile phase of H2SO4 0.05 mol/L, a flow of
0.6 mL/min, and an injected sample volume of 20 µL. The samples were previously filtered
in a syringe filter of 0.22 µm.

2.5. Xylan Solubility and Solution Conductivity

The xylan solubility was determined by preparing a 1% xylan solution in sodium
acetate buffer 50 mmol/L, pH 4.8 [5]. The solution was heated up to the boiling point in
a microwave oven; then, the solution was cooled and remained under 80 rpm agitation
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for one night at 25 ◦C. The solution was centrifuged at 10,000× g for 15 min to separate
the insoluble material (not solubilized xylan). The solid material was dried in an oven at
105 ◦C, up to constant mass.

The conductivity was determined for the 1% xylan solution and sodium acetate buffer
50 mmol/L, pH 4.8. The solution conductivity was measured in a conductometer to verify
the presence of salt (from the neutralization step) in the solubilized xylan.

2.6. Xylan as a Substrate for Xylanase Enzymatic Activity

The enzymatic activity of xylanase (in the Celluclast cocktail—Novozymes) was de-
termined according to the method described by Bailey, Biely, and Poutanen [24]. The
quantification of reducing sugars from xylan was conducted by the 3,5-dinitrosalicilic
acid method (DNS) [25]. An aliquot of 0.9 mL of 1% xylan solution (solubilized xylans
and commercial birchwood xylan—Sigma Aldrich Chem. Co., St. Louis, MO, USA) was
added to 0.1 mL of enzymatic extract and incubated at 50 ◦C for 5 min. The reaction was
interrupted by adding 1.5 mL of DNS and the tubes were boiled in water for 5 min. After
cooling, the absorbance was read at 540 nm. A control for each assay was also prepared
by adding the DNS before the enzymatic extract. The absorbance of these controls was
discounted from the respective samples.

The standard curve was built with xylose solutions (Merck) 0.25, 0.5, 0.75, 1, 1.5, and
2 mg/mL. A unit of enzymatic activity was defined as the amount of enzyme able to
catalyze the liberation of 1 µmol of sugar per minute, expressed in xylose.

2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy
1H NMR spectra of bagasse xylan and external fraction xylan were performed using

a Bruker Avance III HD 600 NMR spectrometer. Samples were measured in D2O. Bagasse
xylan: 1H NMR (D2O, 600 MHz), δ (ppm): 5.20 (m), 4.35 (H-1, d, 7.0 Hz), 3.99 (H-5eq, m), 3.68
(H-4, m), 3.42 (H-3, t, 8.6 Hz), 3.29 (H-5ax, t, 8.1 Hz), 3.20 (H-2, t, 8.1 Hz). External fraction
xylan: 1H NMR (D2O, 600 MHz), δ (ppm): 8.46 (s), 5.39 (m), 4.49 (H-1, m), 4.34 (s), 4.33 (s),
4.12 (H-5eq, m), 3.94 (s), 3.80 (H-4, m), 3.57 (H-3, m), 3.39 (H-5ax, m), 3.30 (H-2, m), 1.92 (s).

2.8. Statistical Analysis

The design expert 6.0 was used for the statistical study, which consisted of the Tukey
test to verify significant differences among the triplicate results. When the p-value was
inferior to 0.05 (p < 0.05), differences were considered statistically significant.

3. Results and Discussion
3.1. Partial Delignification of the Sugarcane Biomass Previously to the Xylan Solubilization

The following topics are related to the results of the xylan solubilization conducted
with previous biomass delignification and using different concentrations of sodium sulfite,
sodium chlorite, and hydrogen peroxide. The sugarcane biomasses submitted to delig-
nification and subsequent xylan solubilization were bagasse, internode, node, external
fraction, and leaf. The xylan solubilization yields, the residual lignin content, the solution
conductivity, and the solubility were determined.

The content of total hemicellulose/xylan (i.e., the sum of anhydroxylose, anhydroara-
binose, acetil groups) was 28.55% for bagasse, 30.51% for internode, 29.47% for node,
28.55% for external fraction, and 23.40% for leaf. The complete chemical composition of the
biomass can be accessed in a previous publication [2]. The xylan content in the material
was used to calculate the solubilization yield.

The presence of xylan in extracts obtained from bagasse and the external fraction
was confirmed by 1H nuclear magnetic resonance (Figures 2 and 3, respectively). In both
spectra, the signals were assigned to D-xylopyranosyl units (H-1-H5ax/eq) and arabinosyl
residue, linked to xylose residue (5.20 ppm and 5.39 ppm for extracts obtained from bagasse
and external fraction, respectively) [26–28].
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3.2. Partial Delignification with Sodium Sulfite

Xylan solubilization from a previously delignified material with sodium sulfite re-
sulted in the best yields of 77.29, 61.58, 98.43, and 90.76% corresponding, respectively, to
bagasse, internode, node, external fraction, and leaf (Table 1). Most of the best results
occurred applying 10% (m/m). The exception was observed for xylan solubilization from
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the internode delignified with 5% of sodium sulfite. Probably, the internode, as a less recal-
citrant material compared to the external fraction, as reported in the literature [8], required
a lower sodium sulfite charge. On the other hand, a higher charge of the delignification
chemical could not contribute to the xylan solubilization affecting the polysaccharides.
A yield of 53% of xylan solubilization was reported for sugarcane bagasse submitted to
alkaline sulfite pretreatment [29]. The subsequent xylan solubilization was performed
with 40% (m/m) sodium hydroxide. Alternatively, the authors applied an enzymatic xylan
solubilization that resulted in 22.10%. Xylan residual lignin was higher for solubilization
from bagasse, external fraction, and leaf, with 14.55%, 12.47%, and 15.28%, respectively,
using 10% sodium sulfite (Table 1). Xylan solubilized from the internode and node showed
lower content of residual lignin, i.e., 8.22 and 5.29%, respectively. Xylan solubilized from
sugarcane bagasse submitted to alkaline sulfite pretreatment was reported as 10.50% of
residual lignin [29]. In order to increase the reaction time and the reagent concentration
in the delignification, an alternative could decrease the amount of residual lignin in the
solubilized xylan; however, it may depend on the material.

Table 1. Xylan solubilization from sugarcane biomasses partially delignified with sodium sulfite.

Sugarcane Biomass Sodium Sulfite
(%, m/m)

Solubilization Yield
(%)

Residual Lignin
(%)

Conductivity
(µS/cm at 25 ◦C)

Solubility
(%, m/v)

Bagasse
5 68 a 18 a 18 94

10 77 b 15 b 19 77
20 53 c 12 c 14 92

Internode
5 62 d 14 b 21 94

10 30 e 8 d 19 84
20 41 f 6 e 11 70

Node
5 56 c 6 e 20 94

10 79 b 5 e 18 87
20 55 c 10 d 13 87

External Fraction
5 79 b 18 a 21 96

10 98 g 12 c 19 79
20 51 c 16 b 11 76

Leaf
10 91 f 15 b 19 84
20 66 a 15 b 12 81

Birchwood Xylan - - - 12 70

Sodium Acetate
Buffer pH 4.8 - - - 10 -

(-) Not detected/determined. The same letter in a column represents a statistically similar result (p-value lesser
than 0.05).

The solubility of the xylan provided from all the conducted treatments was shown to
be better than commercial xylan, having a minimum value of 70.30% of solubility of the
xylan from the internode delignified with 20% of sodium sulfite. A higher solubility (over
90%) was observed for delignified materials with 5% of sodium sulfite (Table 1).

The conductivity of xylan solutions from all treatments was higher than the control.
The xylan solution from the biomasses delignified with sodium sulfite 20% (m/m) presented
lower values, i.e., around 12 µS/cm at 25 ◦C, against 10.46 µS/cm at 25 ◦C for the control
solution (buffer) (Table 1). The xylan extracted from the materials delignified with sodium
sulfite at 5 and 10% presented higher values of conductivity; for example, 18.26 46 µS/cm
at 25 ◦C for the bagasse. The salt content in the xylan can be avoided by increasing the
number of washing steps in the xylan solubilization process [11]. For the xylan samples that
had biomasses delignified with sodium sulfite 20%, the results were close to commercial
xylan (12.04 µS/cm at 25 ◦C), with a conductivity of 10.50 µS/cm at 25 ◦C.
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3.3. Delignification with Sodium Chlorite

The xylan solubilization from sodium chlorite partially delignified biomass varied
according to the material (biomass). Delignification with 5% of sodium chloride and
subsequent xylan solubilization resulted in low yield. The delignification with 10 and 20%
resulted in better subsequent xylan solubilization. The higher xylan yields were 97.84,
62.87, 49.26, 99, and 90.36%, respectively, from bagasse, internode, node, external fraction,
and leaf (Table 2). Naran et al. [16] obtained xylan from stover and aspen with yields of
around 39% and 31%, respectively. These results show that sugarcane biomass is more
suitable for the delignification procedure. Xylan solubilization from internode and node
resulted in lower yields when compared to bagasse. Possibly, the delignification of these
materials affected the hemicellulose content and/or structure [16]. A study reported yields
between 21 and 28% of xylan solubilization (based on total mass) for several biomasses,
such as pine tree, poplar, and switchgrass, whose biomass is treated with the purpose
of generating energy [30]. The residual lignin was lower than 10% for all the solubilized
xylan (Table 2). The lowest value of residual lignin came from one of the xylans from the
internode delignified with sodium chlorite 20%, with 3.94% (Table 2).

Table 2. Xylan solubilization from sugarcane biomasses partially delignified with sodium chlorite.

Sugarcane Biomass Sodium Chlorite
(%, m/m) Extraction Yield (%) Residual Lignin

(%)
Conductivity

(µS/cm at 25 ◦C)
Solubility
(%, m/v)

Bagasse
5 40 a 9 a 20 90

10 98 b 9 a 17 85
20 85 c 7 b 18 75

Internode
5 8 d 9 a 20 84

10 22 e 8 b 15 90
20 63 f 4 c 19 77

Node
5 41 a 5 c 20 84

10 42 a 4 c 17 87
20 49 g 7 b 18 76

External Fraction
5 22 e 6 d 20 91

10 99 b 7 d 17 88
20 85 c 6 d 19 74

Leaf
10 90 h 9 a 17 82
20 46 g 7 b 19 81

Birchwood Xylan - - - 12 70

Sodium Acetate
Buffer pH 4.8 - - - 10 -

(-) Not detected/determined. The same letter in a column represents a statistically similar result (p-value lesser
than 0.05).

The conductivity of the xylan solutions from all of the fractions/biomasses partially
delignified with sodium chlorite 5% presented values around 20 µS/cm at 25 ◦C, with a
slight decrease as sodium chlorite increases. The conductivity of the xylan solution varied
from 15 to 18 µS/cm at 25 ◦C for materials partially delignified with sodium chlorite at
10 and 20%. Based on the control—the buffer acetate of 10.46 µS/cm at 25 ◦C—all the
solubilized xylan solutions presented some salt content (Table 2).

The solubility tests of the xylan extracted from the material previously delignified
with sodium chlorite showed results above the commercial xylan (69.7%) in all treatments
conducted with the xylan extracted from all the sugarcane biomasses (Table 2). The lowest
result found was for the xylan extracted from the external fraction delignified with sodium
chlorite 20% (m/m), with values of 74.40% solubility. The highest result found was also for
xylan from the external fraction; however, its lignocellulosic material was delignified with
sodium chlorite at 5% m/m. The value obtained for it was 91.4% of solubility (Table 2).
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3.4. Delignification with Hydrogen Peroxide

Hydrogen peroxide in an alkaline medium is a reagent used for xylan solubiliza-
tion. Considering a step of partial delignification, hydrogen peroxide was applied with
a low charge (5 to 20% mass of peroxide per mass of material, equivalent to 0.5 to 1%
mass/volume). It was 6–12 times lower compared to the standard method (6% m/v) for
xylan solubilization [12]. Even with a lower hydrogen peroxide charge, some xylan could
be solubilized in the step of partial delignification.

Xylan solubilization resulted in low yields (35.55% maximum) with biomass deligni-
fied with hydrogen peroxide at 5% (m/m) (Table 3). The xylan solubilization yield increased
for the material partially delignified with hydrogen peroxide at 10 and 20% (m/m). The
better yields were 92.83, 97.33, 98.54, 99, and 97.56% with bagasse, internode, node, external
fraction, and leaf, respectively. Both the 10 and 20% (m/m) hydrogen peroxide applied
to the partial delignification resulted in good subsequent xylan solubilization with close
yield values for the respective biomasses. Cashew apple bagasse was pretreated with 4.3%
(v/v) hydrogen peroxide at 35 ◦C for 6 h, resulting in 36% xylan solubilization [31]. Corn
stover and Aspen showed results of 15.9% and 28.2% of xylan, respectively, after peroxide
hydroxide delignification treatment of 3% (v/v) at 95 ◦C for 3 h [16].

Table 3. Xylan solubilization from sugarcane biomasses partially delignified with hydrogen peroxide.

Sugarcane Biomass Hydrogen Peroxide
(%, m/m)

Solubilization Yield
(%)

Residual Lignin
(%)

Conductivity
(µS/cm at 25 ◦C)

Solubility
(%, m/v)

Bagasse
5 12 a 13 a 17 86
10 93 b 13 a 18 87
20 84 c 10 b 18 74

Internode
5 27 d 10 b 18 87
10 97 e 7 c 17 90
20 98 e 4 d 19 82

Node
5 36 f 7 c 17 93
10 90 b 7 c 16 88
20 99 e 3 d 17 94

External fraction
5 19 g 7 c 16 74
10 88 h 10 b 18 83
20 99 e 12 a 19 80

Leaf
10 98 e 10 c 17 85
20 98 e 17 e 20 75

Birchwood xylan - - - 12 70

Sodium acetate
buffer pH 4.8 - - - 10 -

(-) Not detected/determined. The same letter in a column represents a statistically similar result (p-value lesser
than 0.05).

In the solubility tests, the values obtained for the xylan solubilized after biomass
delignification with hydrogen peroxide varied from the maximum of 94% for node xylan
treated after biomass delignification with hydrogen peroxide at 20% m/m to the minimum
of 74.40% found for bagasse xylan from the same pretreatment. These values were superior
to the ones found for commercial xylan, which presented a solubility of 69.7%, thus showing
evidence that the samples obtained by extraction were more soluble than commercial xylan.
In most cases, the conductivity results also displayed values higher than commercial xylan,
showing values ranging from 15.90 to 19.74 µS/cm at 25 ◦C (Table 3). For the sake of
comparison, the conductivity of the commercial xylan remained at 12.04 µS/cm at 25 ◦C.
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3.5. Delignification of the Extracted Xylan

Aiming to reduce the amount of residual lignin in the obtained xylan, a strategy
for xylan delignification was evaluated. The delignification agents used were hydrogen
peroxide, sodium chlorite, and sodium sulfite in the external fraction (better extraction
yields) in a concentration of 10% (m/m). This concentration of the delignifying agent was
chosen to present the best result in the sugarcane biomass delignification essays (Tables 1–3).
With the xylan delignification process, it was observed that the color of the material becomes
lighter according to the reduction of the lignin content.

The mass recovery for xylan delignification was 78.40%, 79.03%, and 87.08%, using
sodium sulfite, hydrogen peroxide, and sodium chlorite, respectively (Table 4). However,
the mass recovery of xylan was statistically similar. Regarding the amounts of initial and
residual lignin, the hydrogen peroxide resulted in better delignification, with a reduction
of 58.44% of the initial lignin content, dropping from the initial 6.04% to 2.51%. The
delignification assays with sodium chlorite and sodium sulfite presented statistically similar
results with respect to residual lignin.

Table 4. Delignification of the xylan extracted from the external fraction and its amount of residual
lignin, solubility, and conductivity.

Delignification
Reagent (10%, m/m)

Mass Recovery
(%) Initial Lignin (%) Residual Lignin (%) Solubility

(%)
Conductivity

(uS/cm at 25 ◦C)

Hydrogen peroxide 79 ± 6 a 6 ± 2 3 ± 0 a 96 ± 3 a 14 ± 0 a

Sodium chlorite 87± 3 a 6 ± 2 6 ± 0 b 95 ± 0 a 14 ± 0 a

Sodium sulfite 78 ± 9 a 6 ± 2 6 ± 1 b 94 ± 1 a 21 ± 0 b

Birchwood xylan - - - 70 12
Sodium acetate
buffer pH 4.8 - - - - 10

(-) Not detected. The same letter in a column represents a statically similar result (p-value lesser than 0.05).

The solubility of the delignified xylan presented statistically similar values: the mate-
rial treated with hydrogen peroxide resulted in 95.95% solubility, followed by the sodium
chlorite (95.05%) and the sodium sulfite (94.2%) (Table 4). The solubility of the deligni-
fied xylan was superior to commercial xylan (69.70%) and to the non-delignified xylan
(80.67%). As the xylan precipitated once more with ethanol, there could be salt formation,
and for this reason the conductivity in solution was determined. The xylan delignified
with hydrogen peroxide presented 13.68 µS/cm at 25 ◦C, while the one delignified with
sodium chlorite presented 13.57 µS/cm at 25 ◦C. The xylan delignified with sodium sulfite
presented a higher value, with 20.67 µS/cm at 25 ◦C (Table 4). However, none of the xylan
solutions were discrepant in relation to the value of the commercial xylan solution, which
was 12.04 µS/cm at 25 ◦C. It is important to highlight that the salt formation can be solved
with ethanol wash; however, it is desirable to reduce the number of washes because of
operational costs [11].

3.6. Xylanase Enzymatic Activity Using the Solubilized Xylan

The results obtained in the enzymatic activities conducted with commercial xylanase
are presented in Table 5. For these essays, the enzymatic extract Celluclast (Noyozymes)
was used, since it is an enzymatic cocktail with higher xylanase content. The substrates
used were the external fraction of the xylan obtained in this study.
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Table 5. Determination of the enzymatic activity of the commercial xylanase by using the xylan
extracted from the external fraction as substrate.

Xylan Origin Activity
(UI/mL)

Xylan Solubility
(%)

Lignin Content
(%)

Birchwood xylan–Sigma Aldrich 106 ± 10 a 70 a -
From the biomass delignified with 5% hydrogen peroxide 175 ± 17 b 86 b 7 ± 0 a

From the biomass delignified with 10% hydrogen peroxide 166 ± 23 b 87 b 10 ± 0 b

Xylan delignified with 10% (m/m) hydrogen peroxide 137 ± 22 c 96 c 3 ± 0 c

Xylan delignified with 10% (m/m) sodium chlorite 58 ± 30 d 95 c 6 ± 0 d

Xylan delignified with 10% (m/m) sodium sulfite 85 ± 12 d 94 c 6 ± 1 d

(-) Not detected. The same letter in a column represents a statically similar result (p-value lesser than 0.05).

Among the results obtained, except for the xylan that went through delignification
with sodium chlorite 10% and sodium sulfite 10% (58.30 and 84.60 UI mL−1, respectively),
all of them presented higher enzymatic activity than commercial xylan (106.37 UI mL−1). It
is important to highlight the xylan that had substrates suffered previous delignification
with hydrogen peroxide with 5 and 10% (174.97 and 166.12 UI mL−1) presented higher
enzymatic activity. A higher lignin content could decrease the enzymatic activity due to
a higher difficulty for the action of the enzyme in the substrate. The xylan chain could
probably be protected, in some regions, by the lignin presence. Another negative effect that
could occur due to the presence of lignin is unproductive adsorption, making the enzyme
unavailable for the reaction. However, the highest activities were determined with the
substrates with higher lignin content (Table 5). The lignin contents in this study do not
seem to have affected the determination of the enzymatic activity. The enzymatic activity is
determined with an excess of substrate, and, in this case, the lignin probably was not an
interferent factor as the content was low.

The xylan chain presented a certain complexity in its hydrolysis, needing a great
diversity of xylanolytic/accessory enzymes with different specificities, i.e., physical, chemi-
cal, and biochemical characteristics, for their complete hydrolysis [15]. The length of the
molecule and its degree of substitution are probably the main factors that influence the
efficiency of the xylan hydrolysis. Moreover, a characteristic studied here which could
influence the activity was solubility. This characteristic was better for the xylan obtained in
this study than for commercial xylan. It is likely that this factor contributed to the xylan in
this study obtaining better enzymatic activity compared to commercial xylan.

4. Conclusions

The partial delignification processes of the biomasses for posterior xylan solubilization
(macromolecule) indicated hydrogen peroxide as a better agent. Considering all of the
evaluating parameters of extraction (yield without and with previous delignification,
lignin content, solubility, and conductivity), the hydrogen peroxide in an alkaline medium
resulted in higher lignin removal. The hydrogen peroxide in an alkaline medium was also
the best reagent for the partial delignification of solubilized xylan, resulting in higher lignin
removal. Furthermore, the xylan partial delignification resulted in some mass loss, and this
strategy also resulted in a material with low residual lignin content. The solubilized xylan
from the previous biomass delignification and from xylan partial delignification was shown
to be appropriate for the determination of xylanase enzymatic activity, displaying higher
action compared to commercial xylan. A substrate for enzymatic activity determination
requires great substrate quality. The low residual lignin content was not an influencing
factor in the xylanase activity; this may be a suppressed effect by the high solubility of the
xylan. The present study determined a protocol for xylan production with possible control
of the contaminant content and residual lignin removal. The characteristics of the xylan
can thus be chosen according to the application quality required.
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