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Abstract: Skincare is one of the most profitable product categories today. Consumers’ demand for
skin-friendly products has stimulated the development of natural-ingredient-based cosmeceutical
preparations over synthetic chemicals. Thus, natural polysaccharides have gained much attention
since the promising potent efficacy in wound healing, moisturizing, antiaging, and whitening. The
challenge is to raise awareness of polysaccharides with excellent bioactivities from natural sources
and consequently incorporate them in novel and safer cosmetics. This review highlights the benefits
of natural polysaccharides from plants, algae, and fungi on skin health, and points out some obstacles
in the application of natural polysaccharides.
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1. Introduction

The skin is the largest organ of the human body and is also the first line of defense
from the external environment [1]. Due to its extensive area, it is easily exposed to and
even damaged by a range of external factors such as ultraviolet radiation, which may lead
to wounds, dehydration, skin aging, melanin deposition, microbial invasion, and skin
barrier abnormalities [2]. Hence, different strategies to treat skin problems or promote skin
health have been used, such as the use of skin care products or some physical therapies [3].
Among various treatments, natural skin care compounds are considered more skin-friendly
from the perspective of consumers, so natural reagents are readily accepted and the de-
mand for natural skin care products is increased [4]. Over the years, researchers have
explored several natural compounds that can protect skin from damage, most of which
are organically sourced macromolecules, including groups of proteins, lipids, polyesters,
polysaccharides, and polyphenols [3]. In this review, special attention will be given to
natural polysaccharides.

Naturally occurring polysaccharides can be obtained from plants, algae, and fungi
through a series of steps of extraction, isolation, and purification [5]. They display dis-
tinct structural features, including their molecular weight, monosaccharide composition,
glycosidic linkages, three-dimensional conformations, charge properties, and types and
numbers of groups, which contribute to their functional properties and determine their
extensive applications [6]. The application of some functional polysaccharides in cosmetics
is based on their functionalities in the formulation technology, such as thickener, film
former, conditioner, emulsifier, and gelling agent, which generally rely on their physico-
chemical properties [4]. On the other hand, bioactive polysaccharides are role by the ability
of water retention, water absorption, anti-oxidant, anti-inflammation, anti-collagenase,
anti-elastase, anti-melanogenic, or anti-tyrosinase [7]. Recently, the use of low-cost natural
polysaccharides for skin applications has been gaining more attention because of their
promising potent efficacy in wound healing, moisturizing, antiaging, and whitening, which
in most cases depends not only on their physicochemical properties but also biological
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activities [7]. However, reliable natural reagents are still in short supply as many problems
need to be solved before they can be converted into products, such as the instability of
natural ingredients, low efficacy, and biosafety concerns [8,9].

Therefore, in addition to summarizing the latest advances in the topic of skin health
benefits provided by polysaccharides from natural origin and their potential practical
application in the cosmetic industry, this work will put forward some problems encountered
in their application, to promote the development and application of natural polysaccharides
in the field of skincare.

2. Skin Health Promoting Effects
2.1. Wound Healing

Wound healing is a complex dynamic process that is classically divided into four
sequential and orchestrated stages of hemostasis, inflammation, proliferation, and tissue
remodeling [3]. Repair refers to the body’s attempt to restore normal structure and function
after injury, and its success mainly depends on the degree of injuries, necrotic tissue, tissue
regeneration capacity, and foreign body infection [10,11]. In recent decades, various strate-
gies have been developed to improve healing and to limit scar formation by modulating
wound healing processes, especially using natural polysaccharides as wound healing agents
regarding their biodegradable, biocompatibility, and low toxicity characteristics compared
with synthetic polymers [12]. More recently, several studies suggested that polysaccharides
produced from Gracilaria lemaneiformis [13], Ganoderma amboinense [14], Nostoc commune [9],
and Phellinus igniarius [15] exert efficient anti-oxidant and anti-inflammatory activities, as
well as a good cell wound-healing effect, thereby having high potential to be regarded as a
new resource for the development of wound-healing cosmetics.

In addition to facilitating skin wound healing, their high film-forming ability and ben-
eficial barrier properties contribute to their potential to be developed as an ideal biodegrad-
able film to promote wound healing efficiency by providing a wound physiological environ-
ment [16,17]. Moreover, poly (vinyl alcohol) (PVA) is a non-toxic vinyl polymer with good
chemical stability, biocompatibility, film-forming properties, and hydrophobicity, which is
often used as a crosslinking agent to reinforce the functional properties of polysaccharide
films [18]. For instance, Feki et al. [19] demonstrated that a biodegradable film based on the
polysaccharides derived from fenugreek (Trigonella foenum-graecum), which is reinforced
by PVA, could stimulate the surrounding healthy cells at the wound site by obtaining the
growth factors required for wound healing, thus boosting re-epithelialization and accel-
erating skin wound closure in CO2 laser fractional burn rats. Additionally, many other
PVA-enhanced natural polysaccharide films have been shown to have potential wound-
healing properties, as evidenced by their high anti-oxidant activity, anti-inflammatory
property, and by histological evaluation, such as Falkenbergia rufolanosa polysaccharide [18],
and Hammada scoparia leaves polysaccharide [16].

2.2. Moisturizing

Moisturizing is a critical part of skin care and has a positive effect on enhancing skin
barrier function, metabolism, and appearance. From an aesthetic point of view, dryness of
the skin can lead to some undesirable experiences that can undermine a person’s confidence,
such as painful, itchy, tingles, stings, and uncomfortable sensory feelings, or redness, dry
white patches, crackers, and even fissures appearance, or the uneven and rough tactile
feelings [4]. Additionally, if this skin condition persists for a long time, the skin will lose
elasticity and wrinkles will gradually appear [4]. Thus, moisturizing products formulated
with humectants or occlusive ingredients are used to retain the content of water in stratum
corneum (SC) or suppress transepidermal water loss (TEWL) [7].
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Lately, many researchers have discovered that several new sources of natural polysac-
charides can achieve moisturizing effects from multiple perspectives, such as Brasenia
schreberi Mucilage polysaccharide [20] and polysaccharide from fermented Tremalla fuci-
formis [21] can regulate gene expression and transcription to provide moisturizing and
lubricating benefits, Anadenanthera colubrina polysaccharide imparts skin hydration effect
by promoting the gene expression and immunoreactivity of several important aquaglycero-
porin which facilitate the skin water passage [22], and galacturonans extracted from Myrtus
communis leaves can form hydrogel to reduce TEWL because of its film-forming effect [23].

Although natural polysaccharides exhibit strong bioactivity, most studies demon-
strated that the moisturizing effect of polysaccharides could be significantly improved
through chemical structure modification [24,25]. Polysaccharides with a higher molecular
weight are more likely to form a net-like structure to prevent water loss, resulting in better
moisturizing retention properties [24]. Functional groups of polysaccharides, including
pyruvate groups, glyoxylate groups, uronic acid groups, and sulfate groups, are potential
factors for moisturizing retention [24]. For instance, when the polysaccharides derived from
Actinidia chinensis roots were subjected to an SO3-pyridine procedure to prepare sulfated
polysaccharides, the moisturizing retention increased with the rise of substitution [25].
Hence, it is significant to explore the structure-activity relationships between bioactivities
and the structure of polysaccharides to promote the application of natural polysaccharides.

2.3. Anti-Aging

Skin aging can be divided into endogenous and exogenous processes. The endogenous
aging process is associated with reduced antioxidant status and cell proliferation capacity.
Senescent cells express genes that produce inflammatory cytokines, growth factors, and
degradative enzymes [7]. Exposure to nicotine or air pollution, sunlight through ultraviolet
(UV) radiation, diet, and medication can be the main exogenous factors [26]. Both intrinsic
and extrinsic aging can lead to the weakening of the skin’s structural integrity and loss of
physiological functions [27], which is manifested in the decrease of elasticity, appearance of
wrinkles, dryness, changes in the thickness of the epidermis, dermal-epidermal junction,
and dermis [28].

Reactive oxygen species (ROS) are continuously produced as a by-product of mito-
chondrial aerobic metabolism and have been proven to play a beneficial role in maintaining
the body or cell health when present in a small amount [29]. However, excessive ROS in
the body can induce and accelerate the intrinsic aging process, especially in skin that is
usually present in areas that are not exposed to sunlight. In addition, the occurrence of pho-
toaging relates to the production of ROS as well. Repeated exposure to solar UV can cause
an increase in ROS, damage the cell structure and function, and mediate inflammatory
responses [30,31]. Consequently, excessive ROS can activate numerous signaling pathways,
leading to decreased skin collagen production, stimulate the production of senescence-
associated secretory phenotype (SASP), and promote synthesis and activation of matrix
metalloproteinases (MMPs), which ultimately accelerate the aging process of skin [32]
(Figure 1). In this context, many natural polysaccharides, which have been reported to
combat different causes of skin aging through multiple routes, can be viewed as potential
alternatives to synthetic chemical compounds used in the cosmetic industry.

First of all, several natural polysaccharides, which show anti-oxidant and anti-
inflammatory potential based on their ability to scavenge free radicals and reduce the
production of inflammatory mediators, are valuable in treating or alleviating ROS-induced
intrinsic aging. Barbosa et al. [33] have proved that Pleurotus ostreatus polysaccharides
can protect the cell against oxidative damage triggered by H2O2 due to its anti-oxidant
property. Luo et al. [15] have indicated that a polysaccharide from selenium-enriched
Phellinus igniarius can clean up ROS and further enhance the ROS clearance ability via
improving the activity of glutathione peroxidase (GSH-PX); Mao et al. [34] extracted a
polysaccharide from Grifola frondose (Dicks.) Gray, which can effectively prevent RAW264.7
cells from H2O2-induced damage via reducing the release of ROS, and enhancing the levels
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of GSH-PX; Tseng et al. [9] have suggested that the polysaccharides extracted from Nostoc
commune have the ability to inhibit IL-6. Thus, all these natural polysaccharides can promise
an antiaging function due to their excellent anti-oxidant and anti-inflammatory properties.
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Figure 1. The schematic diagram of UV irradiation-induced skin aging and polysaccharides acting
for skin protection.

Secondly, some botanical polysaccharides have been proven to counteract skin pho-
toaging. For instance, a polysaccharide extracted from Panax ginseng C. A Meyer by-
product can inhibit the gene expression of matrix metalloproteinase-1 (MMP-1), a UV-
induced enzyme that contributes to skin damage and aging, to play an anti-photoaging
role [35]. Besides, the polysaccharide fraction isolated from Lycium barbarum fruit can
provide anti-photoaging action by protecting against collagen degradation and increased
epidermis thickness.

Thirdly, some polysaccharides with excellent anti-collagenase or anti-elastase activity
can delay the skin aging process as well, such as Nostoc commune polysaccharides can
upregulate Type I collagen production to improve skin elasticity, flexibility, and tension [9],
Volvariella volvacea aqueous extract which is rich in polysaccharides can stimulate the biosyn-
thesis of collagen, thus providing skin firming and elasticity benefits [36], and Brasenia
schreberi Mucilage polysaccharide shows collagen synthesis-promoting effect as well [20].
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2.4. Whitening

Melanin, the dominant pigment responsible for skin color, derives from tyrosine
through a series of oxidative reactions in melanosomes. The first period of melanogenesis
is called the Raper-Mason pathway, which depends on tyrosinase (TYR), the rate-limiting
enzyme [37]. Moreover, some proteins are involved in the maturation of melanosomes, like
tyrosinase-related proteins (TRP1 and TRP2) [38]. After that, melanosomes are transported
to nearby keratinocytes and deposited around the nucleus, where they work and eventu-
ally degrade [8]. Thus, the whole process of melanogenesis includes melanin synthesis,
transport, and degradation.

Melanin synthesis is the most studied area in the regulation of melanogenesis rather
than the transport and degradation [39]. First and foremost, according to the melanogenesis
pathway, the expression and activation of tyrosinase have the most direct impact on the
synthesis of melanin. Secondly, oxidative stress triggered by ROS is another crucial factor
in stimulating melanin synthesis [40]. Besides, the Microphthalmia-associated transcription
factor (MITF) is a critical transcription factor that can increase the expression of TYR, TRP1,
and TRP2. Several signaling pathways can modulate MITF, such as the cAMP/PKA/CREB
signaling pathway [41], and the MAPFs signaling pathway [42].

To date, numerous skin-whitening agents promise an anti-melanogenic effect by
down-regulating TYR expression or suppressing TYR activity. Meanwhile, antioxidant
status and free radical content in cells also affect melanin production. Therefore, natural
polysaccharides which can act as tyrosinase inhibitors or antioxidants are usually selected
as skin whitening agents [8]. For example, Ganoderma lucidum polysaccharides can reduce
melanogenesis by inhibiting cAMP/PKA and ROS/MAPK signaling pathways, as well as
inhibiting paracrine effects [43,44], and polysaccharides from enzymatically hydrolyzed
Cuscuta chinensis Lam. seeds not only exerts superior anti-melanogenic activity by inhibiting
the expression of TYR, MITF, and TRP-1 in B16F10 melanoma cells but also shows excellent
free-radical scavenging ability [38].

3. Natural Polysaccharides
3.1. Polysaccharides Derived from Herbaceous Plants

Polysaccharides extracted from plants are part of the history of herbal ingredients and
their pharmaceutical activities have been studied extensively around the world. Nowadays,
more research studies are emerging that investigate the promoting effects of herbal plants
on human skin health for external applications [5] (Summarized in Table 1).

Table 1. Summary of skin actions of polysaccharides extracted from herbaceous plants, algae,
and fungi.

Polysaccharides Actions Mechanism Type of Study Ref.

Polysaccharides derived from herbaceous plants
Anadenanthera colubrina

polysaccharide-rich
dermocosmetic preparation (ACP)

Moisturizing
Boost the AQP3 gene expression

and induce the formation and
cohesion of involucrin and FLG

In vivo and clinical trial [22]

Purified Benincasa hispida (Thunb.)
Cogn. (Cucurbitaceae)

polysaccharides (BPS) preparation

Moisturizing and
Antiaging

Boost the AQP3 gene expression
and reduce the generation of

intracellular ROS
In vitro and in vivo [45]

Polysaccharides from low-quality
Dendrobium flowers Moisturizing Not mentioned In vivo and clinical trail [46]

Polysaccharides from red-ginseng
(Panax ginseng C.A Meyer)

by-product
Antiaging

Inhibit solar ultraviolet-induced
MMP-1 protein through activator

protein-1 (AP-1)
In vitro and in vivo [35]
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Table 1. Cont.

Polysaccharides Actions Mechanism Type of Study Ref.

Polysaccharides derived from algae

Polysaccharide fraction GLP-2
from G. lemaneiformis Wound healing

Promote cell proliferation by
activating the PI3 K/aPKC

signaling pathway during human
keratinocytes wound healing

In vitro and in vivo [13]

Crude polysaccharides isolated
from Sargassum vachellianum,

Sargassum horneri, and
Sargassum hemiphyllum

Whitening and Antiaging
and Moisturizing Not mentioned In vitro [47]

Enzyme-degraded fucoidan from
Laminaria japonica Whitening Not mentioned In vitro [48]

Sulfated polysaccharides extracted
from Nostoc commune

Wound healing and
Anti-allergic abilities

Inhibit the production of IL-6,
down-regulate the degranulation
of RBL-2H3 basophilic leukemia
cells, and promote the collagen I

secretion

In vitro [9]

Polysaccharides derived from fungi
Polysaccharide from mycelium of
Ganoderma amboinense (GAMPS) Wound healing Not mentioned In vitro [14]

Fermented Tremella fuciformis
polysaccharides (FTPS)
purified components

Moisturizing

Promote the gene expression level
of various moisturizing genes such
as AQP3, TGM1, CASP14, HYAL2,

and FLG.

In vitro and clinical trail [21]

P. igniarius Selenium-rich
mycelium Polysaccharides (PSeP) Wound healing

Remove ROS and further enhance
the ROS clearance ability by

boosting the activity of GSH-PX
In vitro and in vivo [15]

Anadenanthera colubrina (Vell.) Brenan is a tree rich in polysaccharides. Researchers
obtained its hydro-glycolic extract and clinically confirmed its efficacy in maintaining skin
hydration [49]. However, the fact that the A. colubrina extract contains abundant pigments
had hindered its application in the cosmetic industry. Fortunately, Katekawa et al. [22]
developed a pigment-free agent which contained A. colubrina polysaccharide-rich dermo-
cosmetic preparation (ACP) and found that the TEWL in human subjects under treatment
with 1% ACP and 3% ACP were significantly reduced. The mechanism behind its water
retentions property is because it not only can facilitate the expression of aquaporin-3 (AQP3)
gene, which is viewed to provide better distribution and maintenance of water, glycerol and
other skin natural moisturizing factors, but also can induce the formation and cohesion of
envelope proteins (involucrin and filaggrin (FLG)) to strengthen skin barrier function [49].
For this reason, this A. colubrina pigment-free polysaccharide-rich phytopharmaceutical
preparation is considered to be an effective ingredient in skin hydration products. Benincasa
hispida (Thunb.) Cogn. (Cucurbitaceae), also known as wax gourd in Asia, has various
therapeutic uses in traditional medicine [45]. Wang et al. [45] developed its purified
B. hispida polysaccharides (BPS) preparation and found its monosaccharide composition
was arabinose, galactose, glucose, and GalA, with a molar ratio of 9.19:12.11:10.46:10.19.
Also, researchers reported that BPS was an inhomogeneous acidic polysaccharide with
a small amount of bound protein, which contributed to its favorable moisturizing and
antiaging capability both in vitro and in vivo. Results showed that BPS could not only exert
protective and antioxidant effects on H2O2-induced damage to human dermal fibroblasts
(HDF-1) cells by reducing the generation of intracellular ROS, but also promise skin-
hydration effect by boosting the AQP3 expression level in HDF-1 cells. This way, BPS might
be considered as a favorable moisturizing and antiaging factor in cosmetics development.

Additionally, many natural polysaccharides from new resources with eco-friendly
and sustainable properties have been developed. For example, Dendrobium spp. is rich
in polysaccharides with bioactivities, and has been widely used in Chinese medicine
because of its health-enhancing functions [50]. However, most research has only focused
on the stem polysaccharide of Dendrobium orchid; its flower polysaccharide is neglected.
Moreover, only 40% of the total orchid flower is qualified for commercial use and the
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rest of the low-grade flowers are abandoned [46]. Given this scenario, Kanlayavattanakul
et al. [46] have developed an eco-friendly extraction method using green solvents to extract
polysaccharides from low-quality Dendrobium flowers and proved that white Dendrobium
can be used in the formulation of cosmetic products due to its efficient profile for skin
dryness therapy without toxicity. Similarly, Kim et al. [35] have extracted polysaccharides
from red-ginseng (Panax ginseng C.A Meyer) by-product via hot water extraction and
demonstrated that polysaccharides from ginseng by-product can effectively prevent skin
aging caused by UV light and suppress atopic dermatitis induced by house dust mites.
Thus, around 8000 tons (per year) of by-product from red ginseng production can be further
utilized in cosmetics rather than discarded [51].

3.2. Polysaccharides Derived from Algae
3.2.1. Red Algae

Numerous studies have shown that seaweed polysaccharides can be applied in cos-
metic applications because of their excellent antioxidant and antimicrobial activities [7,52].
Apart from those well-defined polysaccharides such as carrageenan, some new polysac-
charides from red algae with skin health benefits have been discovered and received
increased attention as ingredients of cosmeceutical formulations [53,54]. However, purifica-
tion and characterization are the key steps in developing a functional agent from marine
polysaccharides, which have been ignored in the past [13]. Gracefully, some purified and
well-characterized marine polysaccharides have been gradually developed in recent years
(summarized in Table 1). For instance, Gracilaria lemaneiformis is a red alga that belongs to
the family Gracilariaceae, and is widely distributed in the coastal areas of Asian countries.
It is rich in sulfated galactan and consists mainly of repeated units of D-galactose and
3,6-anhydrous galactose with sulfate residues. In addition to the anti-tumor and prebiotic
activities of the polysaccharide fractions of G. lemaneiformis (GLP-1, GLP-2, and GLP-3),
Veeraperumal et al. [13] have also reported their wound healing activities for cosmetic
applications. Among these fractions, GLP-2 has been characterized by a homogenous and
repeating structure of alternating 4-linked 3,6-anhydro-α-L-galactopyranosyl and 3-linked
β-D-galactopyranosyl units with sulfate residues, which shows the greatest ability to pro-
mote cell proliferation by activating the PI3 K/aPKC signaling pathway during human
keratinocytes wound healing [13]. Therefore, the purified GLP-2 fraction can be further
developed into cosmetic products for wound management and skin barrier repair.

3.2.2. Brown Algae

At present, several polysaccharides extracted from brown seaweeds have been antici-
pated for pharmaceutical and cosmeceutical formulations due to their anti-pigmentation,
antioxidant, as well as their emulsifying, thickening, or other functional properties [55]
(summarized in Table 1). As mentioned above, oxidative stress caused by excessive ROS
can further results in skin disorders, such as hyperpigmentation, dark spots, freckles, and
winkle formation [56]. A recent study demonstrated that crude polysaccharides isolated
from Sargassum vachellianum, S. horneri, and S. hemiphyllum have potent antioxidant activity,
tyrosinase and elastase inhibition, and moisturizing ability in vitro, thus having a good
application prospect in the field of cosmetics [47]. Likewise, researchers found that the fu-
coidan from Laminaria japonica, a kind of sulfate polysaccharide with high molecular weight
(MW) originally, showed the best antioxidant (48.3%), TYR activity inhibitory (62.0%) and
anti-melanogenesis activities in B16 cells as MW reduced to 5–10 kDa by using bacterium
Flavobacteriaceae RC2–3 to complete enzymatic degradation [48]. To this extent, low MW
fucoidan can be a splendid candidate for the development of whitening skincare products.

Nevertheless, current studies have mainly focused on the extraction of crude polysaccha-
rides or the proof of their effects on promoting skin health without considering the purification
and characterization of polysaccharides, or discussing their potential action mechanisms.
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3.2.3. Blue-Green Algae

Cyanobacteria (blue-green microalgae) are increasingly considered to be the ideal
species for use in the cosmetic and cosmeceutical industries due to their content of special
natural compounds, especially sulfated polysaccharides [57]. Nostoc is a genus of cyanobac-
teria, which is usually composed of a filamentous moniliform embedded in a mucinous
matrix, a complex sulfated polysaccharide compound [58]. This complex compound has
been proven to play a vital role in withstanding natural stresses, such as resistance to
UV, heat, and desiccation [59]. Therefore, researchers have gradually revealed its efficacy
in the field of medicine or cosmeceuticals in the last decade [59]. More recently, one re-
search work has studied the biochemical compounds, safety, and effect on wound-healing
and anti-allergic abilities of a Nostoc strain, N. commune (summarized in Table 1). This
study has revealed that this polysaccharide-rich extract, which passed the cytotoxicity
and heavy metal assays, can effectively inhibit the production of IL-6, down-regulate the
degranulation of RBL-2H3 basophilic leukemia cells, and promote the collagen I secretion,
thereby suppressing allergic inflammation and delaying the aging process [9]. Given these
results, Nostoc commune polysaccharides may have promising applications in the field of
wound-healing, anti-allergic, and anti-aging cosmetics, but further purification and other
functional analyses should be investigated.

3.3. Polysaccharides Derived from Fungi

Fungal polysaccharides can be composed of different monosaccharides, and have
a variety of skin health-promoting effects, such as anti-oxidant [60], antiaging [61], and
regulating immune function [61]. Moreover, fungal polysaccharides are commonly non-
cytotoxic components, especially those derived from edible mushrooms, which further
indicates the great potential of fungal polysaccharides for cosmetic and cosmeceutical
applications [15]. For this reason, an increasing number of studies focus on discovering
new fungal polysaccharides with skin protection functions, and modifying the extraction
methods or combining them with other substances to improve the yield of polysaccharides
or increase efficacy, to promote the development and application of fungal polysaccharides
in the cosmetic industry (summarized in Table 1).

First of all, some fungal polysaccharides with skin-promoting benefits have been
developed by scholars in recent years. For instance, Ganoderma amboinense has been discov-
ered to be a new resource for extracting polysaccharides that have wound-healing effects.
Ganoderma amboinense is a common Ganoderma lucidum, a medicinal fungus belonging
to the Polyporaceae family of Basidiomycota phylum. Zhao et al. [14] demonstrated that
polysaccharide from mycelium of G. amboinense (GAMPS) had the proliferative ability and
antioxidant activity on normal cells, and GAMPS at low concentration (0.1 µg/µL) could
promote migration and repair scratch injury of NIH/3T3 cells. Thus, GAMPS is considered
to have good wound-healing properties. Additionally, Yang et al. [21] have investigated
the structure and moisture retention ability of fermented Tremella fuciformis polysaccharides
(FTPS) purified components, and indicated that FTP-2 with 177,263 Da molecular weight
could significantly raising the moisture content of the skin epidermis via promoting the
gene expression level of various moisturizing genes such as AQP3, transglutaminase-1
(TGM1), non-apoptotic cysteine-aspartic protease-14 (CASP14), hyaluronan glucosidase-2
(HYAL2), and FLG. Hence, non-cytotoxic FTPS has great potential as a functional ingredient
in cosmetics.

Furthermore, some scholars have been focusing on developing a new methodology
to achieve higher content of active components in extracted fungal polysaccharides. The
polysaccharides are normally extracted by hot water extraction technique [62], ultrasound-
assisted extraction [57], acid and alkaline extraction [63], and microwave-assisted extrac-
tion [64]. Nevertheless, these processes generally have several drawbacks such as long
extraction time, low extraction yield, or the need for multiple extractions to generate consid-
erable amounts of crude polysaccharides. Given this, Barbosa et al. [33] have developed a
novel methodology using a binary system with hot water and supercritical CO2 to recover
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the antioxidant-rich polysaccharide of Pleurotus ostreatus. The optimal extraction condi-
tion was 25 MPa, 433.15 K, and 20% H2O, with 30.69% of the total yield and 0.921 mg of
CHO3. Under this best-defined extraction condition, P. ostreatus polysaccharide had 80.83%
antioxidant activity and no cytotoxic effect was shown in vitro. Overall, this efficient tech-
nology is ready to extract antioxidant-rich fungal polysaccharides with pharmacological or
physiological potential, to make mass production possible.

Apart from improving the technological process to increase the yield and the activity
compounds of the polysaccharide product, some substances were combined with fungal
polysaccharides to make the compound polysaccharides have better functional properties
than the original one. Phellinus igniarius (P. igniarius) is a traditional Chinese medicine,
which is also called forest gold [65]. The medical function of P. igniarius polysaccharides,
such as anti-tumor [66], and immune regulation [67], has been studied extensively around
the world. Howbeit, the efficacy or yield of active polysaccharides will fluctuate if different
extraction methods or conditions are applied. To improve the efficacy, a recent study
conducted by Luo et al. [15] has extracted the P. igniarius Selenium-rich mycelium Polysac-
charides (PSeP) through the enrichment of inorganic selenium by P. igniarius, since both
polysaccharides and selenium have antioxidant ability. Then, researchers found that en-
richment of selenium in an appropriate amount could enhance the wound-healing function
of P. igniarius polysaccharides because PSeP could remove ROS and further enhance the
ROS clearance ability by boosting the activity of GSH-PX, a pathway that needed selenium
as a critical coenzyme to clean up ROS [68]. For this reason, P. igniarius polysaccharide was
endowed with a better role in accelerating the wound healing process.

4. Challenges and Prospects

In this study, we reviewed the various benefits of natural polysaccharides from new
resources for skin health, but identified some problems as well.

Primarily, plenty of research has emerged in recent years on the skin benefits of natural
polysaccharides, but few research findings have been translated into commercial products
successfully. On the one hand, natural polysaccharides extracted from herbs, fungi, or alga
are complex and difficult to purify, which can interfere with the study of natural formulas
and extracts, and affect the reliability of the results. Besides, although natural ingredients
are moderate, biosafety issues should be taken seriously, such as cytotoxicity or side effects,
resulted in few clinical studies on the skin protection ability of active compounds from
natural resources [8]. On the other hand, current studies mainly focus on discovering
new ingredients without an in-depth exploration of their underlying mechanisms. For
example, Jesumani et al. [47] have revealed that the crude polysaccharide extracted from
Sargassum horneri has excellent tyrosinase inhibition ability, but the purification process and
its mechanism have not been subsequently investigated. Further, the relationships between
the functionalities and structural characteristics of polysaccharides from natural sources
cannot be described and summarized until the structure of the purified polysaccharides
is detected [24]. If the structure-activity relationships of wound-healing, moisturizing,
anti-aging, and whitening with plants, algae, and fungi polysaccharides are well explored,
it will provide a clear direction for researchers to generate modified polysaccharides with
enhanced bioactive effects [24]. Thus, in-depth, comprehensive studies are encouraged in
future research, that consider issues such as purification and characterization of natural
polysaccharides, evaluation of toxicity and side effects, identification of the mechanism of
action, exploration of structure-activity relationships, and analysis of clinical impacts.

Secondly, it is necessary to establish and implement some regulations for the utilization
of novel natural resources before new products are put on the market or mass production
begins [9]. For this reason, we strongly support further research in the areas of standardized
culture systems, safe and optimal extraction processes, quality assurance, and quality
control of extract production, especially for some fungi or alga resources, to evaluate their
potential for sustainable and large-scale commercial applications.
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Therefore, in order to promote the development and application of natural polysaccha-
rides, all problems should be carefully addressed before they can be converted into products.

5. Conclusions

The application of natural polysaccharides as ingredients in skincare products could
provide safer and better functional benefits than several synthetic ingredients. However,
the difficulty in purification, the biosafety issue, the lack of in-depth exploration of their
underlying mechanisms and structure-activity relationships, and the immature regulations
are the major hindrances to the large-scale commercial application of natural polysaccha-
rides. Thus, it is expected that in the future, after carefully addressing these issues, these
polysaccharides can be translated into commercial skincare products with therapeutic and
preventive properties.
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