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Abstract: Obesity is one of the most pressing healthcare concerns of the twenty-first century. Obesity
prevalence has risen dramatically in recent decades, and in 2016, more than 1.9 billion adults were
overweight (BMI ≥ 25 kg/m2) and 650 million were obese (BMI ≥ 30 kg/m2). About 50% of the
world’s population is anticipated to be obese/overweight within the next decade. Obesity is a
major risk factor for a variety of non-communicable diseases, including type 2 diabetes mellitus,
cardiovascular disease, non-alcoholic fatty liver disease, and a variety of malignancies. Obesity has
emerged as a substantial risk factor for hospitalization and death from viral respiratory infections
such as influenza A and the ongoing pandemic SARS-CoV-2. Several independent studies have
indicated that obese/overweight patients are at a higher risk of severe disease and death from these
respiratory diseases. Excess fat, particularly visceral fat, contributes to the development of a variety
of metabolic disorders, including persistent systemic inflammation and decreased immunological
function. As a result, the immunological response to infectious pathogens is weakened, resulting
in poorer outcomes post-infection. Additionally, the poor lung mechanics associated with obesity
may increase the risk of more serious respiratory infections. In this review, we address the likely
mechanism(s) that predispose obese people to severe diseases caused by viral respiratory infections.

Keywords: COVID-19; obesity; innate and adaptive immunity; inflammation; insulin resistance; viral
respiratory infections

1. Introduction

Obesity has become a major metabolic disorder due to a combination of genetic,
nutritional, and environmental factors [1,2]. Energy balance in the body is sustained by
regulating food intake and energy expenditure. Excessive calorie consumption and/or
inadequate energy expenditure result in the accumulation of excess body fat, which even-
tually leads to an obese phenotype. The influence of genetics is far less than that of the
environment. Instead of functioning alone, genes tend to combine with other risk factors,
such as unhealthy diets and sedentary lifestyles, to increase the likelihood of weight gain
and obesity [3]. Body Mass Index (BMI) is a metric used to define for overweightness
(BMI ≥ 25 kg/m2) and obesity (BMI ≥ 30 kg/m2). According to the World Health Orga-
nization, more than 1.9 billion adults were overweight in 2016, with 650 million obese,
and around 2.8 million persons dying each year because of excess weight [3–5]. Based
on current incidence rates, it is estimated that by 2030, one in every five people would be
obese, and about 50% of the world’s population will be overweight within the next decade.
Obesity has a negative impact on practically every aspect of health, from reproductive and
pulmonary function to cognition and mood. People with obesity are at an increased risk
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of developing several debilitating and deadly diseases such as Type 2 Diabetes (T2DM),
heart disease and strokes, digestive problems, sleep apnea, osteoarthritis, and several
types of cancer [2,4,6,7]. Type 2 diabetes is the most significant disease that is impacted by
body weight and several studies have demonstrated that obesity significantly increases
the incidence of T2DM [8–11]. A meta-analysis of multiple relevant studies by Guh, D.P
et al. showed that men with BMIs of 30 or higher had a sevenfold higher chance of getting
T2DM than men with BMIs of 25 or lower, while women with BMIs of 30 or higher had a
12-fold higher risk [12]. Several other large studies have established the substantial link
between BMI and T2DM incidence [13–15]. The relationship between obesity and the risk
of coronary artery disease (CAD) has been the subject of many independent studies, all of
which have found a substantial link between the two [16–19]. Similarly, multiple studies
have demonstrated a strong association between obesity and cancer incidence [12,20–25].
Besides, there is a significant link between obesity and all cause death, according to a
meta-analysis of several studies encompassing more than 10 million participants from Asia,
Australia, New Zealand, Europe, and North America [26]. Research has suggested that
obese individuals have a higher chance of acquiring several infectious diseases as well
as a more severe course and higher fatality rates [27–29]. Multiple studies have shown
a significant correlation between obesity and disease severity in viral infections, such as
COVID-19 infections and H1N1 influenza [30–33]. Obese subjects are more likely to experi-
ence severe disease, hospitalization, and mortality following both H1N1 and COVID-19
infection [34–37]. The pathophysiological mechanisms underlying increased susceptibility
of obese subjects are not well understood. Obesity-related immunological dysregulation,
poor immune response, and respiratory dysfunction are a few of the potential factors that
may have an impact on the course and prognosis of the disease [32,38–42]. In addition,
comorbidities such as diabetes, hypertension, and vascular endothelial dysfunction, as
well as disturbed micro and macrovascular circulation, can all contribute to illness severity
and poor prognosis in obese individuals [32,43]. We review the epidemiological evidence
available, with a special emphasis on obesity and its influence on disease severity. We also
explore the likely mechanism(s) through which people with obesity are predisposed to
severe illness as a result of viral respiratory infections.

2. Relationship between Obesity and Outcome of Infectious Diseases

Obesity has traditionally been associated with increased susceptibility and severity of
respiratory tract infectious diseases. Several studies have demonstrated that Body Mass
Index (BMI) is associated with increased severity and worse outcome following respiratory
tract infections like non-allergic rhinitis and influenza like-illness. Obesity also emerged as
a major risk for severe disease and increased mortality during the 2009 H1N1 pandemic
and the ongoing SARS-CoV-2 (COVID-19) pandemic.

2.1. Obesity and COVID-19

COVID-19 disease is caused by a novel coronavirus (SARS-CoV-2) that arose in the
Chinese province of Wuhan and quickly spread to the entire world to infect and kill millions
of people [44]. To this day, the disease is continuously spreading and continues to pose a global
threat with devastating consequences. So far, (November 2022) there were 630,832,131 infected
cases resulting in 6,584,104 deaths worldwide (WHO data). Several epidemiological studies
strongly suggest an association between age and disease severity [45,46]. Most of the deaths
have been reported in patients 65 years of age or older. In addition, people with comorbidities
such as diabetes, cardiovascular disease, hypertension, and cancer have significantly higher
mortality rates [47–50]. Obesity emerged as an independent risk factor for severe infection,
higher ICU hospitalization, and increased death in COVID-19 infected patients. A recent
systematic review and meta-analysis of 208 studies with 3,550,997 participants from over
32 countries clearly and convincingly demonstrated that people with obesity have adverse
outcomes for COVID-19 disease [51]. The authors showed that being overweight increases the
risk of COVID-19-related hospitalization but not mortality, whereas obesity and severe obesity
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increase the risk of both COVID-19-related hospitalization and death. Obesity was revealed to
be a significant risk factor for poor COVID-19 outcomes, and every 5-unit increase in BMI was
linked to 28% higher odds of COVID-19-related hospitalizations (OR 1.28, 95% CI 1.00 to 1.47,
n = 5) and 10% higher odds of mortality (OR 1.10, 95% CI 1.05 to 1.16, n = 15). Another recent
large-scale study involving systemic review, meta-analysis, and meta-regression analysis of
3,140,413 patients from 167 studies also showed that obesity was significantly associated with
increased severity and higher mortality among COVID-19 patients [52]. The authors found
that obese individuals are 1.52 times more likely to experience severe outcomes and 1.09 times
more likely to die when compared to non-obese individuals with COVID-19 disease. Yet,
another meta-analysis involving thirty-eight studies with 902,352 COVID-19 patients found
that obesity was a major factor for ICU admission [37]. The negative effect of obesity on
COVID-19 infections was consistent in all age groups, in both genders and patients from every
region of the world. Zhang et al. conducted a systematic review and meta-analysis of obesity
and COVID-19 outcomes by quantitative analyses of 22 studies from 7 countries in North
America, Europe, and Asia [53]. The authors show that obesity is significantly associated with
several adverse comorbidities and outcomes from COVID-19. Obese patients are more likely
than non-obese patients to present with severe symptoms (OR 3.03), develop acute respiratory
distress syndrome (ARDS; OR 2.89), require hospitalization (OR 1.68), be admitted to the
intensive care unit (ICU; OR 1.35), and undergo invasive mechanical ventilation (IMV; OR
1.76) [53]. Many additional research studies from a variety of demographics have established
that obese patients are more likely to get severe disease, require hospitalization, and die
following COVID-19 infection [34,54–61].

2.2. Obesity and H1N1 Infection

H1N1 virus is a novel strain of the influenza virus that was responsible for the 2009
swine flu pandemic [62,63]. The virus was first detected in the US before swiftly spreading
to other countries. According to World Health Organization (WHO), the virus caused
284,000 deaths worldwide and many of these deaths (~80%) were in people younger than
65 years of age. Several large studies strongly indicated obesity to be a major factor for
hospitalization, incentive care treatment and death in H1N1 patients [64,65]. A system-
atic review and meta-analysis of six cross-sectional studies with a total of 3059 patients
hospitalized for influenza A (H1N1) viral infection revealed that ICU admission rate and
mortality rate of severely obese patients (BMI ≥ 40 kg/m2) was significantly higher than
patients who were not severely obese. Even those patients with a BMI ≥ 30 kg/m2 were
twice as likely to be admitted to ICU or die (OR 2.01) as compared to patients with a
BMI < 30 kg/m2, although this did not reach statistical significance [66]. A large study
comprising 70,000 laboratory-confirmed hospitalized cases of H1N1 from 19 countries also
indicated a strong association between obesity and poorer outcome of H1N1 patients [65].
The study included 70,000 patients of which 9700 were admitted to ICU resulting in the
death of 2500 patients. Several other studies demonstrated that obesity was a major risk
factor for hospitalization and due to 2009 H1N1 disease [36,67–69].

2.3. Obesity and Other Viral Respiratory Infections

After the H1N1 pandemic scientists began to explore if obesity was associated with
increased severity and worse outcomes following viral respiratory infections. Using a
series of Canada’s cross-sectional population-based health surveys Kwong et al. examined
outcomes of patients following influenza infection [70]. The retrospective analysis of
twelve influenza seasons clearly showed that obesity was associated with a greater risk
for hospitalization during the seasonal influenza periods. Impact of obesity on the risk
and outcome of influenza has been reviewed in detail earlier [71]. The paper summarizes
the epidemiologic effects of obesity on hospital admissions, intensive care unit (ICU)
admissions, illness severity, critical infection outcomes, and death related to influenza
A/pdmH1N1 infection. After reviewing various cohort studies, the authors found that
when compared to normal weight people, seasonal influenza infections puts morbidly obese
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people at a greater risk of hospitalization and a lengthier hospital stay. Numerous other
epidemiological studies have demonstrated a link between obesity and a higher frequency
of respiratory tract infections (RTIs), characterized by an increased disease severity and
higher risk of death [72–74].

3. Mechanism Linking Obesity to Increased Vulnerability to Infections

It is unclear what specific mechanism(s) makes obese subjects more vulnerable to
infectious diseases as compared to people with BMI < 25. [28]. However, obesity-related
changes to the host immune system are thought to play a significant role [38,39,43]. Obesity
alters both innate and adaptive immune responses and as a result, the immunological
response to infectious pathogens is weakened, resulting in worse outcomes post-infection.
Obesity induced systemic inflammation and impaired immune function are illustrated in
Figure 1.
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Figure 1. Obesity induced impairment of immune defense. Excess body fat causes metabolic
abnormalities that result in chronic systemic inflammation and impaired immune cell metabolism.
As a result, innate and adaptive immune cells malfunction, resulting in a weakened immunological
response to infections.

3.1. Obesity Associated Chronic Inflammation

Adipose tissue is a form of loose connective tissue that functions to store fat. While
adipose tissue may be found all throughout the body, it is most commonly seen beneath the
skin. Adipose tissue can also be seen between muscles and surrounding internal organs,
especially those in the abdomen. Adipocytes are the principal constituents of adipose
tissue, but it also contains other cell types such as pre-adipocytes, fibroblasts, vascular
endothelial cells, and immune cells such as adipose tissue macrophages. Adipose tissue
is an important endocrine organ that secretes a variety of factors (including adipokines,
chemokines, and cytokines) that have a significant influence on immunological function
and metabolism. [48,75]. Normal lean adipose tissue contains a diverse array of immune
cells that maintain a balance between pro-inflammatory and anti-inflammatory responses.
Along with their function in removing apoptotic adipocytes, these immune cells have



Obesities 2023, 3 50

also been connected to angiogenesis, adipogenesis, and the retention of insulin sensitivity
in lean individuals. Obesity, on the other hand, affects the function and architecture of
adipose tissue, with enlarged adipocytes becoming apoptotic and attracting macrophages
and other immune cells to generate inflammatory adipose tissue [76–80]. Immune cells
in healthy white adipose tissue are mostly regulatory and immunosuppressive in nature.
Among them are Adipose tissue macrophages (ATMs), regulatory T cells (Tregs), T helper
(Th) type 2 cells, and eosinophils. Hypertrophic adipocytes, on the other hand, are more
prone to activating endoplasmic reticulum and mitochondrial stress responses, as well as
causing shear mechanical stress on the extracellular environment. These elements, when
combined, induce the establishment of a chronic, proinflammatory state inside adipose
tissue. Compared to healthy adipose tissue, where macrophages make up around 5–10% of
the cells, hypertrophic obese adipose tissue in mice and humans can include up to 50% of
the total cell types. Hypertrophic adipocytes and macrophages both enhance the release
of Tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant
protein-1 (MCP-1), whilst inflammatory leukocytes within adipose tissue further prolong
the dysfunctional condition caused by adipocyte hypertrophy by generating resistin and
interleukin-1 (IL-1). This eventually results in both local and chronic systemic inflammation.
Elevated chronic systemic inflammation is directly responsible for a diminished acute
response to numerous stimuli in immune cells and, as a result, a reduced ability to fight
infections [39,41,77,79,81–84].

3.2. Obesity and Immune System Integrity

Obesity is often associated with ectopic lipid accumulation in non-adipose tissues like
liver, skeletal muscle, and pancreas [85,86]. Ectopic fat deposition, or the accumulation of
extra lipids in metabolic organs including the liver and muscle, is associated with insulin
resistance (IR) and related metabolic problems. Insulin resistance and ectopic fat interact in
a vicious cycle that increases the risk of developing cardiometabolic diseases. Interestingly,
ectopic lipid deposition in tissues other than adipose is not limited to metabolic tissues,
and obesity-linked lipid deposition has also been found to occur in main lymphoid organs
(bone marrow and thymus). Several independent studies have shown that obesity also
affects primary lymphoid organs (bone marrow and thymus) and adversely impacts their
functioning [87,88]. The integrity of primary lymphoid tissues is critical for appropriate
leukocyte formation and maturation. Blood cell lineages are formed from pluripotent
hematopoietic stem cells obtained from bone marrow. Lymphoid cells are processed further
in the thymus to become mature T-lymphocytes. Mature lymphocytes, such as lymph nodes
and the spleen, dwell in secondary lymphoid tissues where they participate in immune
surveillance and await pathogen activation. As a result, any change in lymphoid tissue
architecture might have a detrimental effect on its functioning, resulting in changes in the
distribution of immune cell populations, poorer T cell activity, and decreased immunolog-
ical defense [39,89–91]). Ectopic lipid deposition impairs lymphoid tissue integrity and
changes the cellular distribution of immune cell populations, resulting in decreased T
cell activity and immunological protection against infections. It is well known that lipid
buildup in lymphoid organs occurs in the elderly and has a negative impact on immunity.
As a result, obesity is thought to accelerate aging of the immune system [91]. The authors
used high-fat diet fed mice (DIO mice) that are widely used to study human obesity and
associated metabolic abnormalities. DIO was shown to significantly exacerbate the age-
related decline of peripheral lymphocytes containing the T-cell receptor (TCR) excision
circle, a marker of freshly produced T cells from the thymus [72].

3.3. Insulin and Leptin Resistance Impact Immune System Functioning

Insulin is the primary hormone responsible for regulating glucose, protein, and lipid
metabolism in metabolic tissues. Insulin is secreted from pancreatic β-cells and signals
via the insulin receptor that is expressed throughout the body. Interestingly, immune cells
also express the insulin receptor; however how insulin signaling affects the metabolism of
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immune cells is not completely understood [92]. Several studies have highlighted the im-
portance of insulin receptor signaling in T-cell functioning during inflammation and acute
infection. Helderman et al. were the first to show that stimulation of T cells upregulates
the insulin receptor on their surface, providing the first evidence for insulin’s beneficial
effects on increasing T cell proliferation and metabolism [93]. In vitro evidence of T cell
insulin-responsive glucose uptake regulation and mTOR-dependent Tbet expression was
provided by subsequent investigations [94,95]. Sue Tsai et al. reported that the expression
of insulin receptor is undetectable in T cells under the steady state and therefore loss of
Insulin receptor has little effect on T cell homeostasis in the steady state. However, loss
of insulin signaling impaired the inflammatory capacity of both CD4+ and CD8+ T cells
under activating circumstances, for example during homeostatic proliferation and viral
infections [96]. In particular, lack of insulin receptor signaling impaired the production
of inflammatory cytokines by T cells, effector differentiation, proliferation, and migra-
tion/recruitment to target organs. Taken together these results imply that T-cell specific
insulin resistance in obese subjects might play a role a role in diminished activation of
T-cells during active infections. Other studies have confirmed impaired insulin signaling in
lymphocytes of obese subjects and type 2 diabetes patients [89,97]. Adiponectin is a key
hormone secreted that exerts an indirect action by enhancing insulin sensitivity of cells
and by reducing inflammation [98,99]. Adiponectin is recognized to have an important
role in immune cell activity, particularly T-cells. Adiponectin levels are considerably lower
in people infected with the COVID-19 and H1N1 viruses [69,100–102]. Adiponectin defi-
ciency exacerbates insulin resistance and inflammation, decreasing overall immunological
response to infection. Indeed, circulating adipokine levels are linked to COVID-19 disease
severity, which includes hospitalization, the requirement for oxygen assistance, mechanical
ventilation, and additional organ support in the intensive care unit [102].

In addition to insulin, leptin, a hormone released by adipocytes, has a significant
impact on both innate and adaptive immunity. Leptin is a crucial regulator of metabolic
balance, acting largely through leptin receptors (LEPR), which are abundantly expressed in
POMC neurons in the hypothalamus, the brain region responsible for controlling hunger
and energy expenditure. LEPRs are expressed in immune system cells, and several stud-
ies have shown that leptin regulates various aspects of immune cell development and
activity [103–106]. Leptin has been shown to influence both innate and adaptive immune
responses by influencing immune cell metabolism, proliferation, and activity [107]. Both
leptin deficient (ob/ob) and LEPR deficient (db/db) mice have impaired innate and adaptive
immune responses to infection. Besides, a missense mutation that causes leptin deficiency
leads to immune dysfunction in humans [108]. Obese people have significantly higher
circulating leptin levels, but their response to leptin is severely compromised due to leptin
resistance [109–111]. As a result, leptin resistance would have a significant impact on the
proper development and activity of immune cells in obese people, weakening the host
defense against infections [32,107].

3.4. Pulmonary Complications of Obesity

Excess weight significantly alters pulmonary physiology, causing decreased lung
volumes, decreased compliance, abnormal ventilation and perfusion relationships, and
respiratory muscle inefficiency [112–114]. In healthy individuals the diaphragm contracts
during respiration pushing the contents of the abdomen downward and forward. The
external intercostal muscles contracting at the same time pull the ribs up and forward.
This function is compromised in obese people because the extra body fat restricts the
ability of the respiratory muscles to contract, lining the chest and filling the abdomen
excess thoracic and abdominal fat can impair chest wall movement, airway size, respiratory
muscle function, and lung perfusion. The ability to move the chest wall decreases as fat
accumulates, resulting in stiffness and decreased lung compliance. Measuring compliance
is difficult, but reductions appear to be proportional to increases in BMI [112,113]. Finally,
obesity appears to have a variety of effects on the respiratory system via mechanical,
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biochemical, and structural changes [115–119]. These can aggravate or worsen various
respiratory condition including viral infections.

4. Adopting a Healthy Lifestyle Lowers the Risk of Severe Respiratory Infections

There is also growing evidence that healthy lifestyle that includes diet control and
exercise can ameliorate metabolic abnormalities, enhance insulin and leptin sensitivity, and
improve host defense against infections [40,120,121]. Several independent studies have
documented that weight loss by caloric restriction or by gastric bypass surgery is associated
with a reduction of inflammatory markers and a significant improvement in T-cell func-
tion [42,122]. Similarly, increased physical activity can reduce inflammation and improve
immune defense against infections. Recent studies have demonstrated that moderate exer-
cise is linked to lower rates of upper respiratory tract infections and reduced risk of acute
respiratory illness [123,124]. The relationship between physical activity and reduced risk
of acute respiratory infections has been comprehensively discussed by Nieman et al. [125].
Evidence also suggests that intermittent fasting (a dietary intervention strategy) may be
beneficial for improving metabolic healthy and immunity and therefore reducing the ill
effects of obesity on poor prognosis of viral infections [126,127]. Therefore, to lower the
risk of complications and severe disease from viral infections, lifestyle adjustments that can
improve metabolic health and immunity should be taken into consideration.

5. Discussion

Obesity is one of the most pressing healthcare issues of the twenty-first century.
Obese people are more likely to develop chronic illnesses such as type 2 diabetes, heart
disease, stroke, and some malignancies [1,4]. Obesity severely lowers quality of life and
is one of the top causes of mortality, globally. In addition, obesity also renders the host
vulnerable to infectious diseases particularly viral respiratory infections [9–13]. Several
studies have documented that obesity is associated with a higher prevalence of respiratory
tract infections (RTIs), characterized by a longer duration of disease and higher mortality.
Obesity emerged as a strong risk factor for severe disease and worse outcome in the current
pandemic disease, COVID-19 and during the 2009 H1N1 pandemic [31–45]. Obese subjects
were more likely to require hospitalization, ICU admission and death due to the SARS-
CoV-2 and H1N1 infection. The specific mechanism(s) that make obese patients more
susceptible to severe illness in viral respiratory infectious disease than normal healthy
ones are unknown. However, obesity-linked immunological dysregulation, insufficient
immune response, and respiratory dysfunction are a few of the possible variables that may
influence the disease’s progress and prognosis [14,21]. Several independent studies have
shown that excess adiposity significantly alters the composition of resident immune cells
in adipose tissue, tipping the scales in favor of pro-inflammatory immune cells resulting
in a persistent low-grade inflammatory condition [52–54]. This chronic inflammation is
likely exacerbated by acute inflammation caused by viral respiratory infections, resulting
in a more severe disease phenotype and worse prognosis. Excess lipid accumulation,
on the other hand, disrupts the integrity and architecture of primary lymphoid tissues,
affecting immune cell growth and activation. Furthermore, metabolic alterations linked to
obesity, such as insulin and leptin resistance, have a deleterious influence on immune cell
function. Finally, obesity significantly alters pulmonary physiology through mechanical,
biochemical, and structural changes, which can aggravate or worsen a variety of respiratory
diseases, including infections. Since obesity associated negative effects on the immune
system are triggered by excess adiposity, weight loss strategies have been shown to reduce
inflammation locally and systemically and improve immune cell functioning. Given the
rising prevalence of overweight and obesity and the potential of upcoming pandemics,
public health initiatives that encourage physical activity, a healthier diet, and weight control
may significantly aid the fight against viral infections.
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6. Conclusions

Obesity has emerged as a significant risk factor for severe disease in several respiratory
viral infectious diseases including the ongoing pandemic SARS-CoV-2. The pathophysiolog-
ical processes driving obese patients’ higher vulnerability are not completely understood.
However, obesity-related immune dysregulation and respiratory dysfunction are two pos-
sible variables that may affect the disease’s progress and prognosis. Furthermore, the poor
lung mechanics associated with obesity may raise the risk of more serious respiratory infec-
tions in obese subjects. Finally, lifestyle changes that might boost immunity and metabolic
health should be taken into account in order to reduce the risk of complications and severe
illness from viral infections.
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