A Simple Estimate of Visceral Fat Area by Multifrequency Bioimpedance Analysis Is Associated with Multiple Biomarkers of Inflammation and Cardiometabolic Disease: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaires
2.2. Anthropometric and Blood Pressure Measurements
2.3. Body Composition
2.4. Biomarkers of Inflammation and Cardiometabolic Disease
2.5. Sensitivity Power Analysis
2.6. Statistical Analyses
3. Results
3.1. Biomarkers of Inflammation and Cardiometabolic Disease by Low versus High Visceral Fat
3.2. Simple and Multivariable Linear Associations between Visceral Fat and Biomarkers of Inflammation and Cardiometabolic Disease
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef][Green Version]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms Linking Obesity with Cardiovascular Disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- Petersen, K.F.; Dufour, S.; Savage, D.B.; Bilz, S.; Solomon, G.; Yonemitsu, S.; Cline, G.W.; Befroy, D.; Zemany, L.; Kahn, B.B.; et al. The Role of Skeletal Muscle Insulin Resistance in the Pathogenesis of the Metabolic Syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 12587–12594. [Google Scholar] [CrossRef][Green Version]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Systemic Inflammation in Obese Humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.F.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and Subcutaneous Adipose Tissue Volumes Are Cross-Sectionally Related to Markers of Inflammation and Oxidative Stress: The Framingham Heart Study. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef][Green Version]
- Piché, M.È.; Lemieux, S.; Weisnagel, S.J.; Corneau, L.; Nadeau, A.; Bergeron, J. Relation of High-Sensitivity C-Reactive Protein, Interleukin-6, Tumor Necrosis Factor-Alpha, and Fibrinogen to Abdominal Adipose Tissue, Blood Pressure, and Cholesterol and Triglyceride Levels in Healthy Postmenopausal Women. Am. J. Cardiol. 2005, 96, 92–97. [Google Scholar] [CrossRef]
- Lemieux, I.; Pascot, A.; Prud’homme, D.; Alméras, N.; Bogaty, P.; Nadeau, A.; Bergeron, J.; Després, J.P. Elevated C-Reactive Protein: Another Component of the Atherothrombotic Profile of Abdominal Obesity. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 961–967. [Google Scholar] [CrossRef][Green Version]
- Sam, S.; Haffner, S.; Davidson, M.H.; D’Agostino, R.B.; Feinstein, S.; Kondos, G.; Perez, A.; Mazzone, T. Relation of Abdominal Fat Depots to Systemic Markers of Inflammation in Type 2 Diabetes. Diabetes Care 2009, 32, 932–937. [Google Scholar] [CrossRef]
- Shah, A.; Hernandez, A.; Mathur, D.; Budoff, M.J.; Kanaya, A.M. Adipokines and Body Fat Composition in South Asians: Results of the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) Study. Int. J. Obes. 2012, 36, 810–816. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, J.J.; Britton, K.A.; Pedley, A.; Massaro, J.M.; Speliotes, E.K.; Murabito, J.M.; Hoffmann, U.; Ingram, C.; Keaney, J.F.; Vasan, R.S.; et al. Adipose Tissue Depots and Their Cross-Sectional Associations with Circulating Biomarkers of Metabolic Regulation. J. Am. Heart Assoc. 2016, 5, e002936. [Google Scholar] [CrossRef][Green Version]
- Silveira, E.A.; Kliemann, N.; Noll, M.; Sarrafzadegan, N.; de Oliveira, C. Visceral Obesity and Incident Cancer and Cardiovascular Disease: An Integrative Review of the Epidemiological Evidence. Obes. Rev. 2021, 22, e13088. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, B.J.; Penninx, B.W.; Ryan, A.S.; Berman, D.M.; Lynch, N.A.; Dennis, K.E. Visceral Adipose Tissue Cutoffs Associated with Metabolic Risk Factors for Coronary Heart Disease in Women. Diabetes Care 2003, 26, 1413–1420. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of New Octapolar Bioimpedance Spectroscopy Analyzers to Predict 4-Component-Model Percentage Body Fat in Hispanic, Black, and White Adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar] [CrossRef][Green Version]
- Ling, C.H.Y.; de Craen, A.J.M.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.M.; Westendorp, R.G.J.; Maier, A.B. Accuracy of Direct Segmental Multi-Frequency Bioimpedance Analysis in the Assessment of Total Body and Segmental Body Composition in Middle-Aged Adult Population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef][Green Version]
- Ogawa, H.; Fujitani, K.; Tsujinaka, T.; Imanishi, K.; Shirakata, H.; Kantani, A.; Hirao, M.; Kurokawa, Y.; Utsumi, S. InBody 720 as a New Method of Evaluating Visceral Obesity. Hepatogastroenterology 2011, 58, 42–44. [Google Scholar]
- Kang, S.H.; Cho, K.H.; Park, J.W.; Yoon, K.W.; Do, J.Y. Association of Visceral Fat Area with Chronic Kidney Disease and Metabolic Syndrome Risk in the General Population: Analysis Using Multi-Frequency Bioimpedance. Kidney Blood Press. Res. 2015, 40, 223–230. [Google Scholar] [CrossRef][Green Version]
- Despres, J.-P.; Lamarche, B. Effects of Diet and Physical Activity on Adiposity and Body Fat Distribution: Implications for the Prevention of Cardiovascular Disease. Nutr. Res. Rev. 1993, 6, 137–159. [Google Scholar] [CrossRef]
- Rosenberg, D.E.; Norman, G.J.; Wagner, N.; Patrick, K.; Calfas, K.J.; Sallis, J.F. Reliability and Validity of the Sedentary Behavior Questionnaire (SBQ) for Adults. J. Phys. Act. Health 2010, 7, 697–705. [Google Scholar] [CrossRef]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Young, D.R.; Hivert, M.-F.; Alhassan, S.; Camhi, S.M.; Ferguson, J.F.; Katzmarzyk, P.T.; Lewis, C.E.; Owen, N.; Perry, C.K.; Siddique, J.; et al. Sedentary Behavior and Cardiovascular Morbidity and Mortality: A Science Advisory from the American Heart Association. Circulation 2016, 134, e262–e279. [Google Scholar] [CrossRef] [PubMed]
- Vella, C.A.; Allison, M.A.; Cushman, M.; Jenny, N.S.; Miles, M.P.; Larsen, B.; Lakoski, S.G.; Michos, E.D.; Blaha, M.J. Physical Activity and Adiposity-Related Inflammation: The MESA. Med. Sci. Sports Exerc. 2017, 49, 915–921. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fain, J.N.; Madan, A.K.; Hiler, M.L.; Cheema, P.; Bahouth, S.W. Comparison of the Release of Adipokines by Adipose Tissue, Adipose Tissue Matrix, and Adipocytes from Visceral and Subcutaneous Abdominal Adipose Tissues of Obese Humans. Endocrinology 2004, 145, 2273–2282. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, J.Y.; Choi, W.J.; Lee, H.S.; Lee, J.W. Relationship between Inflammatory Markers and Visceral Obesity in Obese and Overweight Korean Adults: An Observational Study. Medicine 2019, 98, e14740. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. J. Am. Med. Assoc. 2001, 286, 327–334. [Google Scholar] [CrossRef]
- Plutzky, J. Inflammatory Pathways in Atherosclerosis and Acute Coronary Syndromes. Am. J. Cardiol. 2001, 88, 10–15. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the Acute Phase Response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Wueest, S.; Konrad, D. The Controversial Role of IL-6 in Adipose Tissue on Obesity-Induced Dysregulation of Glucose Metabolism. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E607–E613. [Google Scholar] [CrossRef]
- Korac, A.; Srdic-Galic, B.; Kalezic, A.; Stancic, A.; Otasevic, V.; Korac, B.; Jankovic, A. Adipokine Signatures of Subcutaneous and Visceral Abdominal Fat in Normal-Weight and Obese Women with Different Metabolic Profiles. Arch. Med. Sci. 2021, 17, 323–336. [Google Scholar] [CrossRef]
- Cnop, M.; Havel, P.J.; Utzschneider, K.M.; Carr, D.B.; Sinha, M.K.; Boyko, E.J.; Retzlaff, B.M.; Knopp, R.H.; Brunzell, J.D.; Kahn, S.E. Relationship of Adiponectin to Body Fat Distribution, Insulin Sensitivity and Plasma Lipoproteins: Evidence for Independent Roles of Age and Sex. Diabetologia 2003, 46, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Reneau, J.; Goldblatt, M.; Gould, J.; Kindel, T.; Kastenmeier, A.; Higgins, R.; Rengel, L.R.; Schoyer, K.; James, R.; Obi, B.; et al. Effect of Adiposity on Tissue-Specific Adiponectin Secretion. PLoS ONE 2018, 13, e0198889. [Google Scholar] [CrossRef] [PubMed]
- Bucci, L.; Yani, S.L.; Fabbri, C.; Bijlsma, A.Y.; Maier, A.B.; Meskers, C.G.; Narici, M.V.; Jones, D.A.; McPhee, J.S.; Seppet, E.; et al. Circulating Levels of Adipokines and IGF-1 Are Associated with Skeletal Muscle Strength of Young and Old Healthy Subjects. Biogerontology 2013, 14, 261–272. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (SD)/Freq (%) | Range |
---|---|---|
Female | 51 (65.4) | |
Caucasian | 63 (80.8) | |
Hispanic | 12 (15.4) | |
Asian | 1 (1.3) | |
African American | 2 (2.6) | |
Family history of type 2 diabetes | 31 (39.8) | |
Current smoker | 8 (10.3) | |
Age (years) | 52.0 (10.8) | 35–79 |
Body mass (kg) | 75.4 (16.3) | 45.4–112.5 |
BMI (kg/m2) | 25.9 (4.4) | 17.3–37.0 |
Body fat (%) | 29.2 (10.0) | 10.4–50.6 |
Body fat (kg) | 22.3 (10.3) | 6.7–49.9 |
Visceral fat (cm2) | 105.6 (55.0) | 23.5–232.6 |
Lean body mass (kg) | 52.4 (11.5) | 36.1–80.5 |
Skeletal muscle index (kg/m2) | 7.4 (1.1) | 5.5–10.3 |
Total body water (L) | 38.4 (8.4) | 26.5–59.1 |
Edema index | 0.38 (0.01) | 0.37–0.40 |
Waist (cm) | 89.6 (12.9) | 65.1–114.8 |
Moderate-to-vigorous PA (min/day) | 48.1 (46.6) | 0–180 |
Sedentary behavior (min/day) | 450.2 (151.9) | 66.4–1103.6 |
Systolic blood pressure (mmHg) | 120 (13.9) | 89–159 |
Diastolic blood pressure (mmHg) | 74 (10.1) | 54–108 |
Glucose (mmol/L) a | 5.8 (0.6) | 4.6–10.8 |
Insulin (uU/mL) a | 5.9 (4.8) | 1.1–40.5 |
Total cholesterol (mmol/L) | 5.5 (1.0) | 3.2–9.1 |
HDL cholesterol (mmol/L) | 1.8 (0.4) | 1.0–2.7 |
LDL cholesterol (mmol/L) | 3.1 (0.8) | 1.0–5.4 |
Triglycerides (mmol/L) a | 1.1 (0.5) | 0.4–4.5 |
C-reactive protein (mmol/L) a | 6.1 (12.6) | 3.8–221.0 |
Interleukin-6 (pg/mL) a | 0.49 (0.38) | 0.12–6.86 |
Adiponectin (μg/mL) | 18.5 (9.2) | 8.7–42.7 |
Leptin (ng/mL) a | 17.7 (29.4) | 2.8–139.5 |
Tumor necrosis factor alpha (pg/mL) | 2.8 (0.8) | 1.4–5.6 |
HOMA-IR | 2.0 (1.9) | 0.2–10.5 |
HOMA-β | 76.4 (64.9) | 7.9–388.6 |
Visceral Fat (cm2) | |||
---|---|---|---|
Variable | Low Risk (<100 cm2) (n = 42) | High Risk (≥100 cm2) (n = 34) | p |
Glucose (mmol/L) | 5.7 (0.1) | 5.6 (0.1) | 0.49 |
Insulin (uU/mL) | 4.9 (1.0) | 11.7 (1.1) | <0.001 |
HDL cholesterol (mmol/L) | 1.9 (0.04) | 1.7 (0.1) | 0.04 |
LDL cholesterol (mmol/L) | 3.1 (0.1) | 3.1 (0.1) | 0.78 |
Total cholesterol (mmol/L) | 5.4 (0.2) | 5.6 (0.2) | 0.61 |
Triglycerides (mmol/) | 1.0 (0.1) | 1.5 (0.1) | <0.001 |
C-reactive protein (mmol/L) | 11.4 (4.8) | 24.8 (5.7) | 0.001 |
Interleukin-6 (pg/mL) | 0.45 (0.13) | 0.91 (0.14) | 0.02 |
Adiponectin (μg/mL) | 19.4 (1.3) | 17.5 (1.4) | 0.32 |
Leptin (ng/mL) | 13.7 (2.3) | 40.4 (2.6) | <0.001 |
TNFα (pg/mL) | 2.6 (0.1) | 3.0 (0.1) | 0.04 |
HOMA-IR | 1.2 (0.3) | 3.0 (0.3) | <0.001 |
HOMA-β | 47.6 (8.9) | 111.7 (10.0) | <0.001 |
Visceral Fat Area | |||
---|---|---|---|
Model | B [95% CI] | St β | p |
Ln glucose (1 SD = 0.8 mmol/L) | |||
1 | 0.0002 [0.000, 0.001] | 0.109 | 0.410 |
2 | 0.0002 [0.000, 0.001] | 0.112 | 0.419 |
Ln insulin (1 SD = 7.1 uU/mL) | |||
1 | 0.007 [0.005, 0.010] | 0.604 | <0.001 |
2 | 0.007 [0.004, 0.010] | 0.563 | <0.001 |
HDL cholesterol (1 SD = 0.4 mmol/L) | |||
1 | −0.051 [−0.106, 0.004] | −0.194 | 0.071 |
2 | −0.044 [−0.102, 0.014] | −0.169 | 0.132 |
LDL cholesterol (1 SD = 0.8 mmol/L) | |||
1 | 0.033 [−0.111, 0.178] | 0.059 | 0.645 |
2 | 0.053 [−0.097, 0.203] | 0.094 | 0.483 |
Total cholesterol (1 SD = 1.0 mmol/L) | |||
1 | 0.054 [−0.117, 0.226] | 0.080 | 0.530 |
2 | 0.074 [−0.105, 0.253] | 0.109 | 0.412 |
Ln triglycerides (1 SD = 0.6 mmol/L) | |||
1 | 0.003 [0.002, 0.005] | 0.436 | <0.001 |
2 | 0.003 [0.001, 0.005] | 0.407 | 0.001 |
Ln CRP (1 SD = 31.4 mmol/L) | |||
1 | 0.007 [0.003, 0.011] | 0.387 | 0.002 |
2 | 0.008 [0.003, 0.012] | 0.432 | 0.001 |
Ln interleukin 6 (1 SD = 0.87 pg/mL) | |||
1 | 0.004 [0.001, 0.006] | 0.339 | 0.007 |
2 | 0.004 [0.001, 0.007] | 0.338 | 0.010 |
Adiponectin (1 SD = 9.2 μg/mL) | |||
1 | −0.018 [−0.053, 0.018] | −0.105 | 0.326 |
2 | −0.017 [−0.054, 0.020] | −0.101 | 0.368 |
Ln leptin (1 SD = 24.5 ng/mL) | |||
1 | 0.013 [0.011, 0.015] | 0.779 | <0.001 |
2 | 0.012 [0.010, 0.014] | 0.753 | <0.001 |
TNFα (1 SD = 0.8 pg/mL) | |||
1 | 0.003 [−0.001, 0.006] | 0.184 | 0.131 |
2 | 0.003 [−0.001, 0.006] | 0.172 | 0.173 |
HOMA-IR (1 SD = 1.9) | |||
1 | 0.018 [0.010, 0.025] | 0.518 | <0.001 |
2 | 0.017 [0.009, 0.025] | 0.494 | <0.001 |
HOMA-β (1 SD = 64.9) | |||
1 | 0.585 [0.324, 0.846] | 0.493 | <0.001 |
2 | 0.550 [0.279, 0.820] | 0.463 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vella, C.A.; Nelson, M.C. A Simple Estimate of Visceral Fat Area by Multifrequency Bioimpedance Analysis Is Associated with Multiple Biomarkers of Inflammation and Cardiometabolic Disease: A Pilot Study. Obesities 2023, 3, 1-11. https://doi.org/10.3390/obesities3010001
Vella CA, Nelson MC. A Simple Estimate of Visceral Fat Area by Multifrequency Bioimpedance Analysis Is Associated with Multiple Biomarkers of Inflammation and Cardiometabolic Disease: A Pilot Study. Obesities. 2023; 3(1):1-11. https://doi.org/10.3390/obesities3010001
Chicago/Turabian StyleVella, Chantal A., and Megan C. Nelson. 2023. "A Simple Estimate of Visceral Fat Area by Multifrequency Bioimpedance Analysis Is Associated with Multiple Biomarkers of Inflammation and Cardiometabolic Disease: A Pilot Study" Obesities 3, no. 1: 1-11. https://doi.org/10.3390/obesities3010001