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Abstract: Fibroblast growth factor 21 (FGF-21) is a protein that is involved in the regulation of
glucose, lipids, and energy metabolism. To act on target tissues, endocrine FGF-21 binds preferably
to FGF receptor 1 (FGFR1) in the presence of the coreceptor named β-klotho (KLB). Some of the
effects of FGF-21 include increased fatty acid oxidation, glucose uptake, insulin sensitivity, and
thermogenesis, which can regulate body weight and glycemia control. By exerting such metabolic
effects, the therapeutic potential of FGF-21 for the treatment of obesity and diabetes has been
investigated. Physical exercise has been widely used for the prevention and treatment of obesity.
Several mechanisms mediate the effects of physical exercise, including the FGF-21 pathway. Studies
have shown that physical exercise increases the concentration of circulating and tissue FGF-21 in
animals, while contradictory results are still observed in humans. Considering the metabolic role of
FGF-21 and the chance of physical exercise to induce FGF-21 secretion, in this review we explore the
potential of physical exercise-induced FGF-21 modulation as a strategy for prevention and treatment
of obesity.
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1. Introduction

Fibroblast growth factor 21 (FGF-21), a protein with a molecular weight of 23 kDa, is
produced in the liver, heart, pancreas, white adipose tissue (WAT), brown adipose tissue
(BAT), skeletal muscle, and brain [1], and its action is mediated by the interaction of the
transmembrane protein β-Klotho (KLB) with the receptors FGFR1, FGFR2, FGFR3, and
FGFR4 [2].

Among other endocrine functions, FGF-21 is known as a potent metabolic modu-
lator, since it stimulates glucose uptake and increases fatty acid oxidation by activating
coactivator 1 alpha of the peroxisome proliferator-activated receptor gamma (PGC-1α) [3].
Administration of FGF-21 to rats fed a high-fat diet reduces body weight and visceral fat
gain, and increases insulin sensitivity [4]. Apparently, its effect is associated with increased
energy expenditure [5], increased fatty acid oxidation, and reduced adiposity and body
mass [6]. By exerting such metabolic effects, the therapeutic potential of FGF-21 for the
treatment of obesity and diabetes has been the subject of human studies [7].

Obesity has become a significant public health issue worldwide, and strategies to
combat the high prevalence are necessary because it causes damage to health and is
a financial burden on people and society. Physical exercise has been widely used for
the prevention and treatment of obesity. This is because it has the potential to increase
lipid oxidation, reduce fat mass, increase insulin sensitivity, and lower blood glucose, as
described by some research groups [8,9] and by our [10,11]. We also showed that physical
exercise exerts a protective effect diminishing lipid deposition in the kidneys of mice with
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insulin resistance [12] and by modifying the skeletal muscle proteins expression to a more
oxidative phenotype [13] in an animal model of obesity.

It is known that physical exercise increases both serum concentrations and expression
of FGF-21 in the liver [14], increases FGF-21 gene expression in skeletal muscle [15] and
increases the gene expression of FGFR1 and KLB in WAT [16] in animals. In humans, the
effect of physical exercise on FGF-21 is still contradictory and deserves further investigation.
Considering the metabolic role of FGF-21 and the chance of physical exercise to induce
FGF-21 secretion, this review aims to explore the potential of physical exercise-induced
FGF-21 modulation as a strategy for prevention and treatment of obesity. Therefore, we
provided a summary of the research supporting the benefits of physical exercise for the
prevention and treatment of obesity and describe the FGF-21 as one of the physiological
mechanisms underlying these benefits.

2. FGF-21 Metabolic Effects

FGF is a large protein family, with 22 members in mammals. Based on gene sequence
homology and phylogeny, the FGF family can be divided into seven subfamilies, among
which the endocrine FGF-19 subfamily consists of three FGFs, namely FGF-19 (FGF-15 in
rodents), FGF-21, and FGF-23 [17]. In order to act on target tissues, FGF-21 binds to FGF
receptor 1 (FGFR1) in the presence of the transmembrane protein named β-klotho [18,19].
FGF-21 can also act by other receptors, such as FGFR2, FGFR3, and FGFR4, however it
prefers to bind to FGFR1 over these other receptors [20].

Kharitonenkov et al. (2005) were the first to describe FGF-21 as a possible metabolic
regulator [5]. They observed that transgenic mice expressing human FGF-21 submitted to
high-fat diet for 15 weeks were resistant to obesity, and presented lower levels of fasting
glucose and leptin. They also showed that FGF-21 indirectly exerts hypoglycemic effects
by inhibiting glucagon secretion. Other studies have reported beneficial effects of FGF-21,
including reduction in body weight, liver and circulating triglycerides, fasting plasma
insulin and glucose, and increase in energy expenditure [3,21]. Interestingly, obesity and
type 2 diabetes have also been associated with increased circulating FGF-21 concentration
in humans [22] and animals [23]. The paradoxical effect of FGF-21 was first explained by
the FGF-21 resistance associated with lower expression of KLB and FGFR1 [24], but this
was contradicted in a recent review by [25].

FGF-21 exerts metabolic effects on several tissues (Figure 1). In the liver, FGF21
stimulates fatty acid oxidation and reduces lipid flux by increasing peripheral lipoprotein
catabolism and reducing adipocyte lipolysis [26]. In the white adipose tissue (WAT), it
suppresses lipolysis and enhances insulin sensitivity and adiponectin secretion [26,27], thus
ameliorating some harmful effects of obesity, such as hyperglycemia, glucose intolerance,
insulin resistance, and dyslipidemia [28,29]. In the brown adipose tissue (BAT), FGF-21
increases glucose uptake, lipolysis, and thermogenesis [30]. Other tissue actions of the
FGF-21 can be found in the review published by She et al. (2022) [17].

Since FGF-21 improves hyperglycemia, dyslipidemia, and obesity, the cardioprotective
effects of FGF-21 have also been elucidated. In a recent review, it was discussed that
FGF-21 prevent endothelial dysfunction and lipid accumulation, inhibiting cardiomyocyte
apoptosis and regulating oxidative stress, inflammation, and autophagy [31]. Thus, FGF-21
could be a potential target to prevent and to treat cardiovascular disease.

FGF-21 plays an important role on the metabolism by activating different pathways,
usually involving cell differentiation, proliferation, and energy metabolism proteins. One
of these proteins is the AMP- activated protein kinase (AMPK), which is recognized as an
energy metabolic sensor in cells. The FGF-21 binding to a serine threonine kinase protein
called LKB1, which is considered to be a major regulator of AMPK activation [32]. The
activation of AMPK pathway leads to rise of PGC1-α, a special regulator of mitochondrial
biogenesis, which increases mitochondrial respiratory function and oxidative capacity in
adipocytes and consequently higher energy expenditure [33]. Together, FGF-21 and AMPK
improve free fatty acid oxidation and energy expenditure [34,35], which can inhibit the
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accumulation of triglyceride in hepatocytes, and possibly prevent the development of
non-alcoholic fatty liver disease [36,37].
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Figure 1. Metabolic effects of FGF-21 that may contribute to the body weight and glycemia control. 
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FGF-21 also can act through mitogen-activated protein kinases (MAPK) pathway.
When the complex FGFR1 and B-klotho is auto phosphorylated, the cascade signaling for
MAPK happens, and leads to the activation of ERK 1/2. Minard et al. (2016) submitted
adipocytes cells to stable isotopes to see all the phosphorylation of FGF-21 in these cells [38].
About 15,687 phosphorylation sites occur in 4583 different proteins. FGF-21 signaling was
initiated by tyrosine phosphorylation of FGFR1, followed by ERK1 and 2 phosphorylation.
In the same study, the authors showed that when the cells were submitted to insulin, FGF-21
could stimulate the MAPK pathway 11-fold more and leads to the activation of mTORC1
resulting in glucose uptake, adiponectin secretion and UCP1 elevation.

Considering that FGF-21 significantly ameliorates metabolic diseases impacts, it has
been investigated in pharmacological studies. In this context, six clinical trials in obese
subjects have been conducted to test the therapeutic effects of FGF-21, specifically four
drugs and one agonist receptor antibody [39]. As reviewed by the authors, the short half-
life, the susceptibility to proteolytic inactivation and the obesity-mediated FGF21 resistance
are the great challenges for therapies based on FGF-21. Therefore, regular physical exercise
may be an alternative to induce the effects of FGF-21 that can contribute to combatting
obesity and its damages. In addition, it is a strategy with lower cost and greater access
for the population, which can promote more significant effects for individuals and for
health systems.

3. Effect of Physical Exercise on FGF-21

Physical exercise acts in different ways in the body, as it can alter protein secretion, in-
fluencing circulating but also locally levels. A continuous aerobic exercise session increases
the circulating FGF-21 in both lean and obese individuals immediately after exercise for up
to one hour [40]. Interestingly, a high-intensity interval training (HIIT) session appears to
prolong the increased levels of FGF-21 induced by the exercise up to 3 h after the end of the
session in lean men, while this effect can last for up to 48 h when the resistance exercise
with seven types of exercises targeting all the main muscle groups was performed [41].
In obese people submitted to acute moderate-intensity exercise (treadmill exercise, ∼60%
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peak oxygen uptake), circulating concentrations of FGF21 were elevated after exercise for
up to 6 h [42]. Based on research, it seems that resistance exercise session is the type of
exercise that keeps the FGF-21 level higher for longer post-acute exercise.

It is important to point out that the acute exercise effect on FGF-21 is not a consensus
in the literature. Cuevas-Ramos et al. (2012) [43] and Parmar et al. (2018) [44] observed
no significant changes in serum FGF21 of lean individuals after a single session of aerobic
exercise and resistance exercise, respectively. A summary of the effects of physical exercise
on circulating FGF-21 in lean and obese individuals is demonstrated in the Figure 2. It
appears that the intensity of the aerobic exercise affects the FGF-21 secretion response.
In fact, He et al. (2019) [45] that showed a higher serum concentration of FGF-21 after
performing exercise at 90% of maximum heart rate (HR max) in comparison to an exercise
performed at 69% of HR max. Furthermore, the correlation between exercise volume
and the levels of FGF-21 remains unclear and it is suggested that endogenous FGF-21
is associated with the magnitude of caloric expenditure and oxidative stress caused by
acute strenuous physical exercise [46]. This gap remains, and further studies are needed to
confirm this hypothesis.
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The chronic physical exercise effect on FGF-21 has been extensively investigated.
In lean individuals, a significant increase in FGF21 concentration was shown after two
weeks of treadmill training [43]. On the other hand, Mendez-Gutierrez et al. (2022) [47]
did not find difference in FGF-21 plasma concentration after a 24-week exercise program
(continuous aerobic exercise + resistance). As discussed previously, differences in exercise
protocols, age, and sex of participants can explain the results [48].

In obese people, both HIIT and resistance training increase FGF-21 levels [49] and
the same can be observed in diabetic individuals who performed resistance training and
continuous aerobic training [50]. On the other hand, some studies show a reduction in
FGF-21 values after resistance training [51] and concurrent training [52], or no changes after
continuous aerobic training in cycle ergometer [53] and HIIT [54]. A possible explanation
for this phenomenon is the adaptation to subsequent sessions of physical exercise, lowering
the production of FGF-21 by the liver.

The liver secretes most of FGF-21 in response to physical exercise. However, FGF-21
is also expressed in heart, adipose tissue, skeletal muscle, and pancreas. Physical exercise
has the potential to induce greater tissue expression of FGF-21, as showed by studies
with animals. For example, aerobic and resistance training promote greater expression of
FGF-21 in the heart [55], while HIIT is able to increase the expression of FGF-21 in skeletal
muscle [56]. In another study, continuous aerobic exercise was more effective in increasing
FGF-21 in BAT, skeletal muscle, and liver than HIIT. Additionally in this study, there was a
drop in the serum amount of trained animals, suggesting that chronic exercise reduces, in
the long term, the synthesis of FGF-21 by the liver [57].
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Considering that obesity and body adiposity have become a public health problem,
FGF-21 has gained notoriety in last years. This attention came after a study that showed
that FGF-21 administration promoted weight loss and reduced adiposity in animals fed a
high caloric diet and that the effect was dose dependent. This effect was correlated to the
higher oxygen consumption, resulting in increased caloric expenditure and proportionally
oxidizing more fat at rest [6]. Thus, discovering whether the beneficial effects of physical
exercise would be mediated by the action of FGF-21 could give support to understand
which intensity and frequency are most appropriate to combat obesity and its damages.

In this context, exercise training reduces the body weight and adiposity of obese
animals and restores the concentrations of FGF-21 and β-Klotho in WAT and BAT, ame-
liorating insulin sensitivity and glucose uptake impaired by obesity [58]. Considering
that there are human studies showing that the reduction in fat mass through physical
exercise is not necessarily accompanied by changes in FGF-21 levels, perhaps the FGF-21
anti-obesity effects are associated with better crosstalk between liver and BAT. In fact, part
of the increase in caloric expenditure induced by FGF-21 has shown to be mediated through
BAT and its thermogenic potential and adaptation to exercise training. Evidence shows
that adipose tissue sensitivity to FGF-21 appears to be inversely correlated with lower
BMI when indirect assessed by measuring the β-Klotho gene expression [59]. In addition,
WAT is an endocrine organ, with great capacity to secrete adipokines and other proteins
including FGF-21. Taken together, this evidence suggest that next studies should not focus
on FGF-21 secreted by the liver through stimulation of exercise training, but by BAT and
WAT, increasing their potential for energy expenditure [60].

As physical exercise is the focus of this topic, it is important to highlight its potential to
alter the characteristics of adipose tissue, increasing adipokine secretion, heat production,
and caloric expenditure. It is known that obese and elderly individuals have less activation
of BAT [61], which makes BAT a target of studies in possible treatments. Studies have also
already shown that physical exercise in humans has the potential to modify characteristics
of BAT, increasing the expression of UCP1 and fatty acid transporters in people with obesity,
but not overweight [62,63]. Other studies have already shown that the crosstalk of WAT to
BAT is associated with greater tissue expression of FGF-21 [64]. However, more studies are
needed to investigate the effect of physical exercise on the synthesis of FGF-21 in adipose
tissue, and its potential to alter its characteristics enabling greater heat production and
energy expenditure.

4. Conclusions

In this review, we showed that physical exercise has the potential to modulate circu-
lating FGF21 levels in humans and animals, while tissue effects were primarily observed
in animals. By acting in the reduction of blood glucose and lipid concentrations, which
improves insulin sensitivity, FGF-21 deserves to be the target of studies that seek to discover
ways to prevent and treat obesity. New studies are still needed involving the responses
of FGF-21, FGF21 receptors, and co-receptor KLB to different types of physical exercise,
which could be useful to support the prescription of physical exercise for the management
of obesity.
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