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Abstract: The effect of the partial substitution of Cr with Fe on the thermodynamic parameters
of vanadium-rich Ti16V60Cr24-xFex alloys (x = 0, 4, 8, 12, 16, 20, 24) was investigated. For each
composition, a pressure–concentration isotherm (PCI) was registered at 298, 308, and 323 K. The PCI
curves revealed a reduction in plateau pressure and a decrease in desorbed hydrogen capacity
with an increasing amount of Fe. For all alloys, about 50% or less of the initial hydrogen capacity
was desorbed for all chosen temperatures. Entropy (∆S) and enthalpy (∆H) values were deducted
from corresponding Van’t Hoff plots of the PCI curves: the entropy values ranged from −150 to
−57 J/K·mol H2, while the enthalpy values ranged from −44 to −21 kJ/mol H2. They both decreased
with an increasing amount of Fe. Plotting ∆S as function of ∆H showed a linear variation that seems
to indicate an enthalpy–entropy compensation. Moreover, a quality factor analysis demonstrated
that the present relationship between entropy and enthalpy is not of a statistical origin at the 99%
confidence level.

Keywords: hydrogen storage; vanadium-rich alloy; BCC alloys; thermodynamics; pressure composi-
tion isotherm enthalpy; entropy; EEC compensation

1. Introduction

For the full implementation of hydrogen as an energy vector, safe and low-cost means
of storing hydrogen should be available. Many ways to store hydrogen are available such
as high-pressure, cryogenic liquid hydrogen, porous materials, liquid hydrogen carriers
(e.g., ammonia), complex metal hydrides and intermetallic hydrides [1]. Metal hydrides
are promising candidates for many stationary and mobile hydrogen storage applications.
Because of their high volumetric densities and relatively low pressures of operation under
mild temperatures, metal hydrides are ideally suited for a broad range of applications [2].

There are many families of hydride-forming intermetallic compounds. Usually, they
are formed by a combination of elements that have a high affinity for hydrogen (A) and
elements with a low affinity for hydrogen (B). The most usual A/B combinations are AB5
(e.g., LaNi5), AB2 (ZrV2), AB3 (CeNi3), A2B7 (Y2Ni7), AB (TiFe) and A2B (Mg2Ni) [3]. These
families have been extensively studied using different combinations of A and B elements,
the partial substitution of an A (or B) element by another A (or B) element, the addition of
a catalyst, mechanical deformation, etc.

Another interesting family of metal hydrides is the solid solution Body-Centered Cubic
(BCC) alloys. These alloys are frequently based on vanadium, and they have attracted
attention due to their high maximum hydrogen capacity (~4 wt.%) [1–8]. The process of the
hydrogenation of pure vanadium occurs two steps. In the first step, the monohydride VH
is formed at a very low hydrogen pressure (<1 Pa), while the formation of the dihydride
VH2 occurs at much higher pressure (0.4 MPa at 313 K) [4]. The monohydride is so stable
that it can only be desorbed at a very high temperature (750 K). The high stability of the
monohydride means that the effective capacity of vanadium hydride is about 2 wt.%. The
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thermodynamics of hydrogenation could be changed by alloying vanadium with other
elements to create binary, ternary or quaternary alloys. This modification of thermody-
namics is due to the change in the electronic density of state, ionicity and the lattice’s
expansion [4]. As Ti forms a solid solution with V for a large range of compositions, it was
the first binary system to be investigated for the formation of hydrides [5]. It was found
that alloying V with Ti increases the stability of the hydride (with a lower plateau pressure),
while alloying Cr with V leads to a less stable dihydride [6,7]. As we will see below, by
choosing the right proportion of elements, a ternary alloy could have attractive hydrogen
storage characteristics.

However, to meet the commercial needs for hydrogen storage, two aspects should
be taken into consideration. The first one is the first hydrogenation, the so-called activa-
tion. For vanadium-based metal hydrides, activation is usually slow, requiring a high
temperature and/or pressure [9]. Previous studies have solved these drawbacks by using
additives [10–13] or mechanical processing [14–19]. The second aspect is thermodynamics.
To be commercially attractive, the alloy should have a plateau pressure of a few bars near
room temperature. By alloying vanadium with other metals, the plateau pressure and
reversibility could be improved [18].

As mentioned previously, the hydrogenation of BCC metal hydrides usually occurs in
two stages. First, the phase transition of a BCC solid solution (α-phase) to an intermediate
Body-Centered Tetragonal (BCT) monohydride (β-phase) that is associated with a low
plateau pressure occurs. Second, the formation of a Face-Centered Cubic (FCC) phase
(γ-phase) that is related to a higher plateau pressure with a ratio of hydrogen atoms
over metallic atoms (H/M) of approximately two (H/M ≈ 2) occurs [19]. The hydrogen
absorption and desorption reactions can occur at moderate temperatures and pressures
since the γ-phase is usually not very stable. Consequently, the reversible hydrogen capacity
is reduced by approximately half in vanadium metal, which is not sufficient for practical
applications [20]. This issue has been partially resolved by adding alloying elements [21–29].
For example, Aoki et al. have reported that in the system Ti12Cr23V65, when V is substituted
with Fe, the cyclability is improved: Ti12Cr23V64Fe1 released 97% of its initial capacity,
while the Fe-free alloy only desorbed 88% [30]. Towata et al. studied the effect of partial
niobium and iron substitution on the short-term cycle durability of hydrogen storage
Ti-V-Cr alloys [31]. Partial iron substitution enhanced the cyclability of the Ti16V50Cr34
alloy but reduced its hydrogen storage capacity. Partial niobium substitution was not
only favorable for the Ti25Cr50V25 alloy’s cyclability; it also did not affect the hydrogen
capacity [31]. Moreover, the study of Zr substitution for Ti on the hydrogen absorption–
desorption characteristics of Ti1−xZrxCrV (x = 0, 0.05, 0.1 and 0.1) revealed that the presence
of a small amount of Zr has advantageous effects on the hydrogen absorption properties of
Ti-Cr-V as it suppresses TiH2 phase separation and decreases hysteresis [32].

The hydrogenation/dehydrogenation enthalpy and entropy are obtained from Van’t
Hoff plots that are generated from a series of PCI (pressure–composition isotherm) mea-
surements at different temperatures [33]. The enthalpy (∆H) and the entropy (∆S) of the
metal hydride formation are calculated from the equation ln (peq/p0) = (∆H/RT) − (∆S/R),
where R is the gas constant. In general, the entropy change ∆S is mainly due to the hydro-
gen gas. It is approximately −130 J/mol·K and is considered invariant and independent of
the nature of the metal hydride. The enthalpy should be of the order of −30 kJ/mol H2
to desorb hydrogen under normal temperature and pressure conditions [34]. However,
it was found that enthalpies and entropies derived from Van ‘t Hoff or Arrhenius plots
exhibit strong linear correlations in many thermodynamic or kinetic experiments for a
series of similar reactions [35–38]. This so-called enthalpy–entropy compensation (EEC)
has been the subject of investigations [39–42]. Griessen and Dam have reported an accurate
verification scheme that allows one to determine the nature of EEC using the so-called
K-CQF method [43]. This method permits one to distinguish if the EEC measured is a true
effect or just an artefact due to the limited number and range of data points.
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In this paper, the effect of Fe substitution on the thermodynamic properties of
Ti16V60Cr24−xFex alloys for x = 0, 4, 8, 12, 16, 20, 24 is reported. Firstly, PCI curves of
all alloys will be compared. Then, enthalpies and entropies will be deducted from Van’t
Hoff plots. Finally, since we have a series of measurements with a systematic change
in composition, we will address the correlation between enthalpy and entropy for this
composition system.

2. Materials and Methods

All alloys were synthesized by arc melting under argon to avoid any oxidation. The
elements were purchased from Alfa-Aesar (Tewksbury, MA, USA) with the following
purities: Ti (99.95%, V (99%), Cr (99%), Zr (99.95) and Fe (99.9%). They alloys were
re-melted several times to ensure homogeneity. Then, they were hand-crushed in an
argon-filled glove box. Hydrogenation measurements were carried out with a homemade
Sievert-type apparatus. Each sample was first fully hydrogenated at room temperature
under 3 MPa of hydrogen. Then, it was kept under pressure while the temperature was
raised to the desired PCI temperature. Only desorption PCIs were recorded. The PCI
measurements were performed at 298, 308 and 323 K.

3. Results and Discussion
3.1. Microstructure, Crystal Structure and First Hydrogenation

The microstructure, crystal structure and first hydrogenation were reported in our
previous paper [44]. It was found that the microstructure consisted of two main phases:
a matrix with a chemical composition close to the nominal one and a Zr-rich region. The
crystal structure of the main phases of all as-cast alloys was BCC. For x ≥ 12, the BCC
phase abundance decreased, and a C14 Laves phase appeared. The lattice parameter of the
BCC phase decreased linearly with an increasing Fe proportion. After hydrogenation, the
BCC phase was converted into a BCT phase for all hydrides, and a C14 phase appeared for
x = 4 and 8. For x ≥ 16, a C15 phase was present. Table 1 shows the hydrogen capacity and
the crystal structure in the as-cast and hydrogenated states of all investigated alloys.

Table 1. Maximum hydrogen capacity upon activation and crystal structure of hydrides [44].

x Maximum Hydrogen
Capacity (wt.%)

Crystal Structure

As-Cast After Hydrogenation

0 3.78 BCC (100%) BCT (100%)

4 3.09 BCC (100%) BCT (80%) + C14 (20%)

8 2.08 BCC (100%) BCT (78%) + C14 (22%)

12 1.89 BCC (79%) + C14 (21%) BCT (76%) + C14 (24%)

16 2.06 BCC (77%) + C14 (23%) BCT (58%) + C14 (24%) + C15 (18%)

20 1.94 BCC (74%) + C14 (26%) BCT (64%) + C14 (23%) + C15 (13%)

24 1.99 BCC (72%) + C14 (28%) BCT (53%) + C14 (37%) + C15 (11%)

3.2. Pressure Composition Isotherms (PCIs)

Figure 1 shows the desorption PCI curves of all alloys at temperatures of 298, 308
and 323 K. All isotherms show incomplete desorption and a sloping plateau pressure.
This is a common behaviour of BCC alloys that indicates that these alloys desorb hydro-
gen in two steps: at high pressures, a dihydride-to-monohydride transformation occurs,
and at low pressures, a monohydride dehydrogenation occurs [18,45]. In our case, as
the lowest measurable pressure was 10 kPa, we could only register the dihydride-to-
monohydride transformation.
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Figure 1. PCI desorption curves of Ti16V60Cr24−xFex alloy for x = 0, 4, 8, 12, 16, 20, 24, at 298, 308 and
323 K.

As only the desorption isotherm was registered and the capacity is lowered at higher
temperatures due to a low critical point, the isotherms were centered on their inflection
points (i.e., middle of the plateau). It is also at this point that the equilibrium pressure was
taken for the Van’t Hoff plots.

3.3. Enthalpy and Entropy

The Van’t Hoff plots constructed from the PCI curves of each alloy are presented in
Figure 2.
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Figure 2. Van’t Hoff curves of Ti16V60Cr24−xFex alloy for x = 0, 4, 8, 12, 16, 20, 24, at 298, 308 and 323 K.
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For each composition, the entropy (∆S) and enthalpy (∆H), were calculated from the
intercept and slope. The results are given in Table 2. As a comparison, the enthalpy and the
entropy of the formation of pure vanadium hydride are −40 kJ/mol H2 and −140 J/K·mol
H2, respectively [7]. Here, we can notice that from x = 0 to 8, the enthalpies and entropies
are in the same ranges as those of the pure vanadium hydride.

Table 2. Entropy and enthalpy values of the formation of all hydrides.

x ∆S (J/K·mol H2) ∆H (kJ/mol H2)

0 −134 ± 14 −41 ± 5

4 −150 ± 12 −44 ± 4

8 −126 ± 12 −39 ± 4

12 −114 ± 6 −36 ± 2

16 −98 ± 5 −33 ± 2

20 −84 ± 12 −30 ± 4

24 −57 ± 5 −21 ± 2

Figure 3 displays variations in ∆S and ∆H as functions of the Fe content. We found a lin-
ear decrease in both enthalpy and entropy with an increasing iron content. Lynch et al. have
reported the same trend [46]. They found that for the system (V0.9Ti0.1)1−xFex (x = 0, 0.01,
0.02, 0.05, 0.075), the enthalpy went from (−51.79 ± 0.36) to (−40.00 ± 2.70) kJ/mol.H2,
and the entropy changed from (−149.4 ± 1.0) to (−136.0 ± 8.1) J/K·mol H2. They attributed
the reduction in enthalpy to a decrease in the binding energy of hydrogen to the metal.
Moreover, the lattice parameter was also diminishing, causing a shrinkage of the size of
the tetrahedral site occupied by hydrogen. Both effects were suspected to destabilize the
dihydride and then qualitatively reduce the desorption enthalpy. They explained the drop
in entropy by an increase in the vibrational entropy of the hydrogen in the hydride lattice.
As mentioned earlier, the enthalpy can largely vary but, usually, the entropy value is around
−130 J/K·mol H2. Here, there is a clear dependence of entropy on the composition.
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3.4. Enthalpy–Entropy Compensation

Figure 4 presents the variation in entropy (∆S) as a function of enthalpy (∆H) for the
Ti16V60Cr24−xFex alloy for x = 0, 4, 8, 12, 16, 20, 24. It shows a linear variation that seems to
be a case of enthalpy–entropy compensation (EEC).
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As mentioned above, Griessen and Dam introduced a method called combined K-
CQF to verify the nature of EEC. The parameter CQF is a dimensionless factor that is
a compensation quality factor, while K is a parameter that indicates the position of the
coalescence [43]. The steps for determining K and CQF are as follows:

Step 1

The first step consists of calculating the harmonic mean temperature Thm using the
following equation:

Thm =

(
1
M

M

∑
j=1

1
Tj

)−1

(1)

Tj with j = 1, . . . M is the temperature of the j-th measurement at which the equilibrium
pressures of the N samples are determined [43]. In our case, Tlow = 298 K and Thigh = 323 K.
Since we used three temperatures for measuring PCTs, M = 3, and we obtain Thm = 309 K.

Step 2

The second step is to determine the temperature of compensation Tcomp and the
correlation coefficient R2. Tcomp is the slope of the linear fit derived from the ∆Hi versus
∆Si plot. The variation in the Tcomp predictable from the change in the thermodynamic
parameters is given by the R2 value. An R2 value of 1 means that Tcomp is totally determined
by the thermodynamic parameters. From Figure 4, we have Tcomp = 254 K and R2 = 0.982.

Step 3

The third step is finding Tmin and calculating the coefficient K. There are two ways to
determine Tmin. Firstly, the following equation can be used:

Tmin =
Tcomp

Rsquare
(2)

From Equation (2), the value of Tmin is 258 K. Secondly, a graphical method may be
used by extrapolating the Van’t Hoff plots. Then, the temperature where the spread of the
Van’t Hoff curves is at a minimum is the Tmin. Figure 5 presents this extrapolation for the
Van’t Hoff plots of Figure 2. The value of Tmin in this case is 242 K.
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The coefficient K can be calculated using the following equation:

K =

1
Thm

− 1
Tmin

1
2

(
1

Tlow
− 1

Thigh

) (3)

Step 4

The fourth step consists of calculating the CQF parameter. It is given by the follow-
ing equation:

CQF = 1 −
√√√√ 1 − Rsquare(

1
Rsquare

)(
Tcomp

T∗

)2
− 2

(
Tcomp

T∗

)
+ 1

(4)

T* is the temperature at which the measured lnP_spread is the largest. T* = Tlow if
1/Tmin is closer to 1/Thigh or T* = Thigh if 1/Tmin is closer to 1/Tlow. In our case, as 1/Tmin is
closer to 1/Tlow, consequently, T* = Thigh = 323 K.
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All useful parameters to determine K and CQF are summarized in Table 3. As specified,
Tmin can be either calculated from Equation (2) or deducted from the lnP_spread versus 1/T
plot. As K is dependent on Tmin, we obtained two different values of K. After completing
all calculations, we obtained values of K = −6.909 (for Tmin = 242 K), K = −4.902 (for
Tmin = 258 K) and CQF = 0.44219.

Table 3. Useful parameters for determining K and CQF according to [43].

Thm (K) Tcomp (K) R2 Tmin (K) (from Equation (2)) Tmin (K) (from Figure 5) T* (K)

309 254 0.982 258 242 323

To draw a conclusion, Griessen and Dam proposed a graphical method (Figure 6), a
95% or 99% confidence level (CL) contour that depends only on the number of samples. If
the (K, CQF) point lays outside the CL% contour, then the EEC is not of a statistical origin
at this confidence level [43].
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4. Conclusions

A study of the dehydrogenation thermodynamic properties of Ti16V60Cr24−xFex
(x = 0, 4, 8, 12, 16, 20, 24) alloys allowed us to draw the following conclusions: first of
all, the plateau pressure and the desorbed hydrogen capacity decreased with an increasing
Fe proportion. Enthalpy and entropy both diminished when increasing the amount of
Fe. Moreover, ∆S, as function of the ∆H plot, showed a linear variation that indicates the
possible existence of EEC with Tcomp = 254 K. Finally, the values of (K, CQF) derived from
∆S and ∆S are outside the 99% confidence contour. This means that the origin of the EEC is
not a statistical effect at the 99% confidence level.
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