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Abstract: Molecular cobaloxime-based heterogeneous systems have attracted great interest during
the last decades in light-driven hydrogen production. Here, we present a novel cobaloxime-tethered
periodic mesoporous organosilica (PMO) hybrid (Im-EtPMO-Co) prepared through the immobiliza-
tion of a molecular cobaloxime complex on the imidazole groups present in ethylene-bridged PMO.
The successful assembly of a molecular cobaloxime catalyst via cobalt-imidazole axial ligation has
been evidenced by several techniques, such as 13C NMR, Raman spectroscopy, ICP-MS, and XPS.
The catalytic performance of Im-EtPMO-Co catalyst was essayed on the hydrogen evolution reaction
(HER) under visible light in presence of a photosensitizer (Eosin Y) and an electron donor (TEOA). It
showed an excellent hydrogen production of 95 mmol hydrogen at 2.5 h, which corresponded to a
TON of 138. These results reflect an improved photocatalytic activity with respect to its homogenous
counterpart [Co(dmgH)2(Im)Cl] as well as a previous cobaloxime-PMO system with pyridine axial
ligation to the cobaloxime complex.

Keywords: cobaloxime; periodic mesoporous organosilicas; photocatalysis; hydrogen evolution
reaction; primary axial coordination

1. Introduction

Mimicking biological procedures has always been a good approach to tackling energy
questions. In recent years, numerous efforts have been made for the development of natural
photosynthesis-inspired technologies for the efficient transformation of the energy from
sunlight into chemical energy [1]. Hydrogen is considered an efficient energy vector due to
the high energy density of the H2 molecule (119 kJ/g) and its ability to be stored in large
quantities. Furthermore, hydrogen combustion with air only produces water as residue, so
it is considered a cyclic and environmentally friendly process [2].

Aiming at designing efficient hydrogen evolution catalysts, alternative to traditional
Pt-based catalysts, the first studies were focused on simulating the activity of hydrogenase
enzymes (especially metalloproteins) for hydrogen production [3,4]. In fact, hydrogenases
utilizing earth-abundant metals such as Fe or Ni-Fe are the most active molecular catalysts
for hydrogen production [5,6]. Although numerous studies have been performed on the
design of biomimetic models of [Fe]-hydrogenases for hydrogen production, their inherent
instability during the catalytic process has limited their applicability. In this sense, to solve
these drawbacks, recent approaches have been focused on the assembly of biomimetic
diiron catalysts on heterogenous supports, such as metal organic frameworks (MOFs) [7],
silica-based mesoporous materials [8] or graphene-based materials [9] for light-induced
hydrogen production. These heterogeneous matrices have provided improved stability for
the anchored molecular catalyst, overcoming those issues related to its water solubility and
photostability [10].
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Conversely, in the past decades, cobalt compounds have provided an appealing alter-
native to hydrogenase mimic complexes as efficient and low-cost HER catalysts. Inspired by
the structure of vitamin B12 and more specifically in the stable organometallic cobalt com-
plex, 5-deoxyadenosyl-(5,6-dimethylbenzimidazolyl)-cobinamide, present in its core [11],
cobaloxime catalysts have been widely studied for electro and photocatalytic hydrogen
production. Their great interest as molecular catalysts is given by their high O2 toler-
ance [12,13], which allows their use under aerobic conditions, their facile synthesis, and
their tunable catalytic properties only modifying the substituents on the equatorial and/or
axial ligands [14,15]. Furthermore, they show high proton-reduction activity at moderately
low overpotential [16] and can work in aqueous solutions [17].

Since the first example reported by Ziessel and co-workers about a cobaloxime complex
for photocatalytic hydrogen production [18], numerous advances have been achieved in
the design of more efficient molecular cobaloxime catalysts. Among them, one of the most
interesting approaches to improve their catalytic activity is based on the heterogenization
of such complexes and derivatives on solid supports. This approach is highly attractive
because it improves the stability of the molecular catalysts while allowing their recyclability.
Until now, most of the synthetic strategies used for that purpose have been focused on the
development of materials containing surface pyridine moieties, which can act as ligands to
axially coordinate a cobaloxime core. It is well documented that the catalytic properties
of cobalt-diimine complexes can be improved by the presence of N-donor groups in the
axial position [19]. In the last decades, several studies have revealed an increase in the
electrocatalytic HER efficiency with cobaloximes assembled on the surface of carbon-based
materials [20] and semiconductors [21].

Recently, this methodology has been extended to other non-conductive porous sup-
ports, such as metal organic frameworks (MOFs) [22,23], covalent organic frameworks
(COFs) [24], and most recently, on periodic mesoporous organosilicas (PMOs) [25] for
light-driven photocatalytic hydrogen production. Nevertheless, the major drawbacks and
limitations of these molecular assemblies are the degradation of the equatorial ligand [26]
and the de-coordination of the axial ligand [14] under catalytic conditions.

These findings indicate the relevance of considering enzyme-inspired outer coordi-
nation spheres (OCS) features around the cobalt core during the artificial catalyst design,
therefore mimicking the protein scaffold of natural hydrogenases [27]. In this sense, ini-
tial studies reported by Wakerley and Reisner analyzed the influence of over 20 different
substituted-pyridine ligands axially coordinated to a cobaloxime core for H2 production.
They found that the presence of more electron-donating pyridine ligands gave rise to an
enhancement of the catalytic activity [15]. More recently, Dutta et al. [28] demonstrated that
the improvement in the catalytic efficiency and long-term stability of a synthetic cobaloxime
complex on electrocatalytic H2 production was influenced by the number of basic groups on
the outer coordination sphere of the cobaloxime core. Recently, these researchers extended
the OCS studies to axial-imidazole-linked cobaloxime, one of the most active homogeneous
cobalt complexes [29]. As previous results obtained by axial-pyridine-linked cobaloxime,
the presence of peripheral basic functionalities around the same cobaloxime core enhanced
the electro- and photocatalytic hydrogen production. These results show the relevance
of the appropriated primary axial coordination sphere substituents to the catalytic cobalt
center. It is important to note that most of the research in this field relies on the study of the
electro- and photocatalytic HER performance of homogenous cobaloxime catalysts, with
scarce studies on heterogenous systems.

In this context, our recently developed cobaloxime-PMO hybrid provides an approach
for the design of heterogeneous cobaloxime systems [25]. In previous work, an efficient
cobaloxime HER catalyst was synthesized through the coordination of a cobalt complex,
Co(dmgH2)(dmgH)Cl2, on an ethylene-bridged periodic mesoporous organosilica (PMO)
containing pyridine moieties. Compared to its homogenous counterparts, this system
provided increased stability of the cobalt complex into the mesopores, which was reflected
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in its enhanced catalytic efficiency. Until now, it was a unique example of anchoring
cobaloxime HER catalysts on the surface of a PMO.

Herein, we report the synthesis of a novel cobaloxime-PMO hybrid material by axial
coordination of a cobaloxime catalyst [Co(dmgH2)(dmgH)Cl2] on the imidazole ligands
present on the surface of an ethylene-bridged PMO. The hybrid system was fully charac-
terized by different techniques and evaluated as a catalyst in the photocatalytic hydrogen
evolution reaction.

2. Materials and Methods
2.1. Chemicals

The reagents for the synthesis of the different PMO materials, including octade-
cyltrimethylammonium bromide (OTAB, Sigma-Aldrich, Lyon, France), sodium hydroxide
(NaOH, Sigma-Aldrich, Schnelldorf), 3-(chloropropyl)-triethoxysilane (95%, Sigma-Aldrich,
Lyon, France), 1,2-bis(triethoxysilyl)ethane (96%, BTEE, Sigma-Aldrich, Lyon, France),
and imidazole (99%, Sigma-Aldrich, Lyon, France), were used as received without further
purification. Dimethylglyoxime (99%, Sigma-Aldrich, Lyon, France), acetone (>99.5%,
Sigma-Aldrich, Lyon, France), cobalt (II) chloride hexahydrate (Acros Organics, Geel, Bel-
gium), methanol (>99.9%, PanReac, Barcelona, Spain), imidazole (>99.9%, Sigma-Aldrich,
Lyon, France), and chloroform (99.9%, Sigma-Aldrich, Lyon, France), employed for the
synthesis of the cobalt complex, were used as supplied. Photocatalytic experiments were
performed using acetonitrile (99.7%, PanReac, Barcelona, Spain) and Milli-Q-water as sol-
vents, eosin Y (>95%, TCI, Zwijndrecht, Belgium) as photosensitizer and triethanolamine
(>99%, TEOA, Sigma-Aldrich, Lyon, France) as a sacrificial electron donor.

2.2. Synthesis of the Materials
2.2.1. Synthesis of Cobaloxime Complexes: Co(dmgH2)(dmgH)Cl2 and Co(dmgH)2(Im)Cl

Co(dmgH2)(dmgH)Cl2 complex was synthesized according to a previously reported
procedure [30]. CoCl2·6H2O (2.1 mmol, 0.5 g) and dimethylglyoxime (4.2 mmol, 0.49 g)
were dissolved in dry acetone (15 mL). The resulting solution was kept under stirring at
room temperature for 30 min, after which it was filtered to eliminate any unreacted reactant.
The filtrate was cooled overnight to form green crystals. These crystals were recovered
by filtration and washed with cold acetone. The Co(dmgH2)(dmgH)Cl2 complex was dried
under vacuum at 80 ◦C.

For the synthesis of the cobaloxime complex containing an axial imidazole ligand,
Co(dmgH2)(dmgH)Cl2 complex (0.92 mmol, 0.33 g) was dispersed in 4 mL of chloroform and
then the solution was stirred at room temperature for 10 min. Afterward, the imidazole
ligand (2.28 mmol), previously dissolved in 4.5 mL of CHCl3, was added dropwise to
the solution. During this process, the green solution turned brown, indicating the ligand
exchange had gone to completion. Subsequently, 3 mL of distilled H2O was added to the
solution, and it was stirred for 2 h. The aqueous phase was separated by decantation and
the organic phase was washed with H2O (3 × 15 mL). Finally, the product was washed
with ethanol and dried under vacuum at 80 ◦C overnight. The final complex was named
Co(dmgH)2(Im)Cl [19].

2.2.2. Synthesis of Chloropropyl Functionalized Ethylene-Bridged Periodic Mesoporous
Organosilicas (Cl-EtPMO)

In a typical synthesis [31], the OTAB surfactant (0.85 g) was dissolved in a basic solu-
tion of NaOH (0.89 mL, 6 M) and Milli-Q water (53 mL). The solution was stirred overnight
at 45 ◦C. Then, a mixture of organosilane precursors (2.04 mmol in total) in a molar ratio
of 80% 1,2-bis(triethoxysilyl)ethane and 20% (3-chloropropyl)triethoxysilane was added
dropwise under stirring. The resulting solution was stirred at the same temperature for 24 h.
Afterward, the mixture was aged at 97 ◦C for 4 days under static conditions. The obtained
solid was collected by filtration and thoroughly washed with water. In order to remove the
surfactant, 1 g of as-synthesized material was refluxed in an ethanolic solution (50 mL of
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ethanol with 1 mL of HCl 37 wt%) for 12 h. This procedure was repeated twice. The final
material was filtered out and dried at 100 ◦C under vacuum. It was named Cl-EtPMO.

2.2.3. Anchoring of Imidazole on Cl-EtPMO

The functionalization of Cl-EtPMO material by imidazole groups was carried out
following the procedure reported by Zhang et al. [32]. The material Cl-EtPMO (1.97 g) was
dispersed in a solution of imidazole (0.18 g) in toluene (40 mL). The reaction mixture was
stirred at 120 ◦C for 24 h, after which the solid was recovered by filtration and washed with
toluene in order to remove the excess imidazole not anchored in the PMO structure. The
final material was dried at 80 ◦C under vacuum overnight. The functionalized material
was named Im-EtPMO.

2.2.4. Immobilization of Dichlorocobaloxime on Im-EtPMO

The immobilization of dichlorocobaloxime complex on the PMO structure through
imidazole groups was carried out with the following procedure: Im-EtPMO (0.5 g) was
dispersed in methanol (10 mL) and then, dichlorocobaloxime complex (0.3 g) was added to
the solution. The resulting mixture was stirred at 80 ◦C for 24 h. Afterward, the solution
was filtered and washed with methanol in order to remove the excess dichlorocobaloxime
complex. The final product was dried at 80 ◦C under vacuum. The heterogenous catalyst
was named Im-EtPMO-Co.

2.3. Physicochemical Characterization

X-ray powder diffraction (XRD) patterns were collected on a Bruker D8 Discover
A25 diffractometer using Cu Kα radiation. High-resolution transmission electron mi-
croscopy images were recorded on a JEOL JEM 1400 microscope. N2 adsorption–desorption
isotherms were recorded at −196 ◦C using an Autosorb-iQ MP/MP-XR instrument. Before
measurement, all the samples were outgassed overnight at 100 ◦C. The surface area was
calculated using the Brunauer–Emmett–Teller (BET) method and the pore size distribution
was determined using the Density Functional Theory (DFT) method. The solid-state 13C
CP/MAS NMR spectra were recorded on a Bruker Avance III HD 400 WB spectrometer at
13 kHz. The excitation pulse and recycle time for 13C CP/MAS NMR were 3.6 ms and 2 s, re-
spectively. Chemical shifts were referenced to the tetramethylsilane (TMS) standard. Raman
spectra of the samples were collected with a Renishaw Raman instrument with green laser
light (532 nm). X-ray photoelectron spectroscopy (XPS) was performed on a SPECS Phoibos
HAS 3500 150 MCD X-ray photoelectron spectrometer with a monochromatic Al anode
(1486.7 eV). Regions were calibrated using the reference value BE (C1s) = 284.8 eV. Induc-
tively coupled plasma mass spectrometry (ICP-MS) for the 59Co isotope was measured
using a NexION 350X spectrometer. Before the measurement, the sample was digested in
an UltraWave microwave system.

2.4. Photocatalytic Hydrogen Production Tests

Light-driven photocatalytic hydrogen production was carried out in a Restek vial
(20 mL) with constant stirring under visible-light irradiation using a 300W Xe lamp (ORIEL)
equipped with a Newport filter (FSQGC400, λ ≥ 400 nm), at 10 cm distance. In a typical
reaction, 1 mg of Im-EtPMO-Co catalyst was suspended in 11.4 mL of CH3CN:H2O (1:1)
solution containing TEOA (10%) and eosin Y (0.05 mM). The pH of the reaction was
adjusted to 7.4 with HCl (37 wt%). Subsequently, the solution was degassed bubbling N2
for 30 min and irradiated with a Xe lamp. Sample aliquots (50 µL) were taken at different
reaction times using a gas-tight syringe and quantified by using a gas chromatograph
(Shimadzu GC-2010 Plus) equipped with a barrier discharge ionization detector (BID)
and a ShinCarbon ST column (2 m × 2 mm i.d.). For the homogeneous catalyst, 1 mg
of the molecular catalyst, Co(dmgH)2(Im)Cl, was dispersed in 1:1 CH3CN/H2O (11.4 mL)
containing EY (0.05 mM) and TEOA (10%), and the pH was adjusted with HCl to 7.4.
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3. Results and Discussion
3.1. Synthetic Strategy for Cobaloxime-Tethered Imidazole-Functionalized Ethylene-Bridged
PMO Catalyst

The approach proposed for the development of a novel cobaloxime-PMO hybrid
catalyst is shown in Scheme 1. As can be observed, several steps were strictly needed
to achieve the functionality required on the pore channels of the PMO material due to
the non-availability of a functional mono-silane precursor with imidazole groups. For
that, self-assembly assisted co-condensation reaction of a conventional bis-silane precursor,
1,2-bis(triethoxysilyl)ethane (BTEE), and chloropropyltriethoxysilane in the presence of
OTAB as surfactant under basic conditions led to an ordered ethylene-bridged PMO with
chloropropyl groups attached to the pore walls. Subsequently, the nucleophilic substitution
of chlorine atoms by imidazole accompanied by the release of HCl gave rise to a PMO
support containing imidazole groups on their pore channels. These organic groups can
act as attachment points to further assemble cobaloxime catalysts on the surface of the
PMO. To corroborate it, pictures depicted in Scheme 1 of the support before and after the
immobilization of the cobaloxime complex clearly reflected the color change of the solid
from white to light-brown produced by the anchoring of the molecular cobaloxime catalyst
on the imidazole groups present on the PMO channels.
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3.2. Structural Characterization

The powder X-Ray diffraction (PXRD) patterns of all synthesized materials are de-
picted in Figure 1. The parent material (Cl-EtPMO) showed three reflection peaks in the
low-angle region (2θ < 5◦). The first diffraction peak at 1.78◦ corresponded to the (100)
reflection with a d-spacing of 5 nm. The two second-order peaks were attributed to the
(110) and (200) reflections with d-spacing of 2.9 and 2.5 nm, respectively. These diffraction
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peaks are characteristics of 2D-hexagonal ordered (p6mm) mesostructures [33]. After func-
tionalization by imidazole, the resulting Im-EtPMO material exhibited a similar diffraction
pattern. Likewise, the subsequent anchoring of cobaloxime molecular catalyst through
imidazole ligands preserved the initial ordered mesostructure.
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Transmission electron microscopy (TEM) images of Cl-EtPMO, Im-EtPMO, and Im-
EtPMO-Co materials are depicted in Figure 2. TEM images showed that all PMO materials
had highly ordered structures with uniform and parallel channel pores, which confirmed
the findings obtained by XRD.
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Im-EtPMO and Im-EtPMO-Co materials exhibited type-IV isotherms according to
the IUPAC [34] with a condensation step at P/P0 = 0.3–0.7, characteristic of mesoporous
materials (Figure 3). Both materials showed a non-distinctive hysteresis loop, which is
typical of materials with small mesopores [35]. The narrow pore size distribution and
average pore size confirmed pores in the meso range. Table 1 summarizes the textural
properties of the materials. Im-EtPMO showed a BET surface area, pore volume, and
pore diameter of 583 m2 g−1, 0.5 cm3 g−1, and 4.2 nm, respectively. The anchoring of
the molecular cobaloxime catalyst on the pendant imidazole groups gave rise to a slight
decrease in surface area and pore volume.
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Figure 3. Nitrogen adsorption–desorption isotherms and pore size distributions (inset) of Im-EtPMO
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Table 1. Physicochemical properties of Im-EtPMO and Im-EtPMO-Co materials.

Sample a0
a

(nm)
SBET

(m2 g−1)
Vp

(cm3 g−1)
Dp

b (nm) w c (nm)

Im-EtPMO 5.6 583 0.52 4.2 5.6
Im-EtPMO-Co 5.7 455 0.43 4.2 5.7

a Unit cell parameter calculated as a0 = 2d100/
√

3. b Calculated from DFT analysis. c Determined from the
difference between a0–Dp.

The 13C CP/MAS NMR measurements confirmed the presence of the organic bridging
groups in the silica framework as well as the different organic groups anchored on the
mesochannels (Figure 4). The Cl-EtPMO material showed an intense peak centered at
6 ppm associated with the Csp3 of the ethylene groups present in the pore walls [36].
Small peaks at 50, 26, and 9 ppm correspond to the three carbon atoms in the chloroalkyl
chain. The additional peaks at 58 and 17 ppm, corresponding to the -OCH2− and -CH3
groups, respectively, derived from the incomplete hydrolysis of the ethoxy groups under
synthesis conditions. After functionalization with imidazole, Im-EtPMO material showed
new signals at low fields (136 and 123 ppm) attributed to the Csp2 in the imidazole ring [37].
After immobilization of the cobaloxime complex on the surface of the PMO-containing
imidazole groups, signals associated with C=N (154 ppm) and -CH3 (13 ppm) groups
from the glyoximate ligands were clearly present [38]. Additionally, an aromatic signal
at 130 ppm confirmed the coordination of nitrogen to cobalt atoms. The signal at 50 ppm
is assigned to residual CH3OH employed in the washing process to remove unreacted
cobaloxime complex. These results were further confirmed by Raman spectroscopy.

Raman spectra of all synthesized materials are shown in Figure 5. Cl-EtPMO showed
intense signals below 3000 cm−1, associated with the C-H stretching of propyl chains as well
as the ethylene bridges. After substitution with imidazole, the resulting material exhibited
new signals above 3000 cm−1 attributed to =C-H stretching vibration from the imidazole
ring. Additionally, peaks in the region of 1500–1400 cm−1 were associated with the C=C and
C=N stretching vibrations of imidazole moieties [39,40]. After the immobilization of the
cobaloxime complex, new vibrations at 1620 and 1220 cm−1 were assigned to C=N and N-O
stretching vibrations, respectively, for dimethylglyoxime groups of the cobaloxime [41].
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X-ray photoelectron spectroscopy (XPS) measurements provided evidence about the
incorporation of cobaloxime catalyst on the surface of PMO as well as the oxidation state
of the cobalt species (Figure 6). The survey spectrum of Im-EtPMO showed peaks related
to O, C, N, Cl, and Si elements. After the immobilization of the cobaloxime catalyst, an
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additional peak associated with the Co element was present. The N1s high-resolution
spectrum of Im-EtPMO showed a broad peak around 400.8 eV, which was attributed to
the nitrogen atoms present on the imidazole ring (Figure 6a) [42,43]. A similar N1s XPS
spectrum was obtained for Im-EtPMO-Co, but with the maximum slightly shifted towards
lower binding energy (400.3 eV). This peak would encompass the pyridinic-N coordinated
to the Co centers, the N-C groups present on the imidazole groups, as well as the N=C
bonds from the glyoximate ligands of the cobaloxime. Furthermore, the study of the Co 2p
region (810–770 eV) clearly evidenced the presence of cobalt species in the Im-EtPMO-Co
sample (Figure 6b). The high-resolution Co2p spectrum exhibited two symmetrical doublet
peaks at 781 and 796 eV corresponding to the 2p3/2 and 2p1/2 levels in a 2:1 expected
ratio [44]. The 15.0 eV of distance and the lack of satellite bands undoubtedly evidenced
the presence of cobalt in a +3 oxidation state in the cobaloxime complex [45].
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The functionalization degree of Cl-EtPMO material by imidazole was analyzed by
elemental analysis. The nitrogen content for Im-EtPMO was 1.38 mmol g−1. After the
immobilization of the cobalt complex via the cobalt–imidazole axial bond, the cobalt
loading analyzed by ICP-MS was 0.70 mmol g−1. According to these results, the N/Co
ratio on the Im-EtPMO-Co catalyst was ca. 2.0. It means that one cobaloxime complex was
coordinated per imidazole group on the PMO support. These findings revealed that all
surface imidazole ligands were completely accessible and acted as attachment points to
assemble the cobaloxime catalyst.

3.3. Photocatalytic Hydrogen Evolution Reaction

Once the successful anchoring of the cobaloxime catalyst via axial ligation of imidazole
groups present on the surface of the PMO support was confirmed, 1 mg of Im-EtPMO-
Co catalyst was assessed towards H2 production in a water: acetonitrile solution under
continuous visible light irradiation (>400 nm) in the presence of eosin Y and TEOA as
photosensitizer and electron donor, respectively. According to the literature, as depicted in
Scheme 2, the photocatalytic hydrogen evolution reaction commences with the reductive
quenching of photoexcited [EY]. Subsequently, [EY*−] reductant transfers an electron to
the proton reduction catalyst (Im-EtPMO-Co) to produce hydrogen.
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Scheme 2. Schematic representation of photocatalytic hydrogen evolution reaction with TEOA and
Eosin Y (EY) as electron donor and photosensitizer, respectively. (EY*, photoexcited EY).

Previous similar works had shown that all components—photosensitizer, electron
donor, and catalyst—were strictly necessary to carry out the hydrogen evolution reac-
tion [25]. Figure 7a depicts the catalytic HER turnover numbers (TON) (vs [Co]) after 4 h
of irradiation. As can be observed, our catalytic system demonstrated photocatalytic H2
production with an initial rate of 68.1 mmol h−1 g−1. The HER was leveled off after 2.5 h of
irradiation, reaching a hydrogen production maximum of 95 mmol g−1. This corresponded
to a TON (vs [Co]) of 138. The photocatalytic activity was optimized by increasing the
amount of catalyst from 1 mg to 3.6 mg. Under similar reaction conditions, a gradual drop
in hydrogen production was observed by increasing the concentration of Im-EtPMO-Co
in the system. The TON decreased from 138 (1 mg catalyst) to 109 (1.5 mg), 94 (2 mg),
and 54 (3.6 mg). In light-induced hydrogen production systems, an increase in the amount
of solid catalyst is accompanied by a decrease in the amount of H2 generated due to the
blocking of light radiation by the catalyst particles [8,46,47].
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For comparison, Co(dmgH)2(Im)Cl complex was tested as a homogenous catalyst un-
der analogous reaction conditions. After 2.5 h, the total amount of evolved hydrogen
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corresponded to a TON (vs [Co]) of 40. This value was in the range of that reported by
Dolui et al. [29] for the same homogenous chloro-imidazole cobaloxime complex. These re-
sults clearly reflected an increase in the photocatalytic activity of the molecular cobaloxime
catalyst after its immobilization on a PMO material. Previous reports have attributed the
activity enhancement undergone by immobilized cobaloxime catalysts, compared to their
homogenous counterparts, to the confinement of the molecular catalysts into pores of the
material [23,24]. It is well known that cobaloximes are degraded under photocatalytic
conditions due to the decoordination of the N-donating ligand from the cobaloxime core.
Although this fact would limit the stability of the cobaloxime species in a solution capable
of being reduced, the possible re-coordination of these species to the N-donating ligands
present in the pores of the material would lead to the reactivation of the cobaloxime center.

Finally, aiming at proving the role of the primary axial coordination sphere in
cobaloxime complexes on HER, our proposed system, Im-EtPMO-Co, was compared with
a recently reported cobaloxime-hybrid PMO, py-etPMO-Co. In this system, the cobaloxime
units were assembled via a cobalt-pyridine axial bond on the porous channels of the
PMO [25]. Under the same photochemical conditions, the py-etPMO-Co catalyst was less
active for the photoinduced hydrogen evolution, reaching a TON (vs [Co]) of 80 (Figure 7b).
This lower hydrogen production can be explained on the basis of the basicity of N-aromatic
ligands coordinated with the cobaloxime catalyst. It is reported that a higher pKa of axial
N-based aromatic ligands is directly correlated with a higher stability and activity of the
corresponding catalyst [14]. On this basis, the higher pKa of N-alkyl imidazole ligand
compared to the pyridine one resulted in a higher photocatalytic HER activity of N-methyl
imidazole-linked cobaloximes in comparison to axial pyridine-linked cobaloximes.

4. Conclusions

In this work, we present a novel cobaloxime-PMO hybrid synthesized by axial coor-
dination of the cobaloxime core onto the imidazole groups present on the surface of an
ethylene-bridged periodic mesoporous organosilica. The cobaloxime hydrogen evolution
catalyst was evaluated in the photocatalytic hydrogen production in presence of eosin
Y and TEOA, as photosensitizer and electron donor, respectively. This catalytic system
reached a hydrogen production maximum of 95 mmol g−1, which corresponded to a TON
(vs [Co]) of 138. This value largely exceeded that obtained by its homogenous counterpart,
therefore corroborating the positive confinement effect of the molecular cobaloxime catalyst
in the pores of the PMO material. Likewise, the existence of an axial cobalt-imidazole
ligation on this system led to an enhanced photocatalytic hydrogen production compared
to a previously reported cobaloxime-PMO hybrid with cobalt-pyridine ligation.
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