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Abstract: Photoreforming biomass-derived waste such as glycerol into hydrogen fuel is a renewable
hydrogen generation technology that has the potential to become important due to unavoidable
CO2 production during methane steam reforming. Despite tremendous efforts, the challenge of
developing highly active photocatalysts at a low cost still remains elusive. Here, we developed
a novel photocatalyst with a hybrid support comprising reduced graphene oxide (rGO) and TiO2

nanorods (TNR). rGO in the hybrid support not only performed as an excellent scavenger of electrons
from the semiconductor conduction band due to its suitable electrochemical potential, but also acted
as an electron transport highway to the metal co-catalyst, which otherwise is not possible by simply
increasing metal loading due to the shadowing effect. A series of hybrid supports with different TNR
and rGO ratios were prepared by the deposition method. Pd nanoparticles were deposited over hybrid
support through the chemical reduction method. Pd/rGO-TNRs photocatalyst containing 4 wt.%
rGO contents in the support and 1 wt.% nominal Pd loading demonstrated hydrogen production
activity ~41 mmols h−1g−1, which is 4 and 40 times greater than benchmark Au/TiO2 and pristine
P25. The findings of this works provide a new strategy in optimizing charge extraction from TiO2,
which otherwise has remained impossible due to a fixed tradeoff between metal loading and the
detrimental shadowing effect.

Keywords: reduced graphene oxide; TiO2 nanorods; hydrogen; photoreforming; solar energy;
palladium; electron transfer

1. Introduction

The current global economy is largely dependent on fossil fuels, which are virtually
integral to industry, transport and everyday life. Massive global utilization of fossil fuels
has caused critical and irreversible environmental problems throughout the world. Since
fossil fuels are non-renewable, alternative energy sources are urgently needed to curb CO2
emissions, which are considered as the main driver behind unpredictable climate changes.
Among available fuels, hydrogen has been regarded as an excellent energy carrier due to
its high energy content and zero emission of greenhouse gas [1]. Therefore, the research
on advanced materials for technologies related to hydrogen production, as well as on
hydrogen uptake, storage and delivery is becoming more important with each passing day.
The development of efficient photocatalysts to produce hydrogen by water splitting using
solar energy is an attractive environmentally friendly method, which offers a way to capture
available solar energy and convert it into hydrogen [2]. However, pure water splitting is
thermodynamically difficult and no major breakthrough has been achieved after decades
of research [3–8]. At a power level of 1000 W/m2, the solar energy reached on the earth’s
surface by far exceeds all human energy needs [9]. The amount of energy striking the Earth
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from sunlight in one hour (4.3 × 1020 J) is more than the total energy consumed on this
planet in one year (4.1 × 1020 J) [10]. Economic feasibility studies indicate that a 5% solar
photon conversion to H2 through the photoreforming of oxygenates would be competitive
with conventional non-renewable processes (e.g., methane steam reforming) [11].

A broad spectrum of semiconductor materials has been explored for photochemical
hydrogen production [12–14]. However, a few materials satisfy the basic requirements for
effective photoreforming. These requirements include: (1) stability against photo-corrosion;
(2) appropriate band positions and band gap (Eg); and (3) sufficient lifetime of charge
carrier to deliver high H2 production rates, because electron transfer reactions between
semiconductor surfaces and organic molecules occur on microsecond timescales [15]. Con-
sidering the above requirements, TiO2 is the most practical semiconductor photocatalyst
for photoreforming, despite its drawbacks such as its rapid recombination rate of photoin-
duced electron (e−) and hole (h+), ability to make use of only 4% of available sunlight, low
surface area and low charge carriers mobility [16,17]. In order to overcome these problem,
many methods have been proposed to enhance its photocatalytic activity; the most effective
of them are the deposition of high work function noble metals as co-catalysts, tailoring the
semiconductor support [18] and the addition of hole scavengers [19]. The effect of metal,
its amount and support type on the performance of the catalyst are summarized in Table 1.
The amount of metal loading depends on multiple parameters, including type of metal,
support and support surface area, and has been widely investigated. In most cases, the
metal loading is below 5 wt.% metal loading [1,18,20–23].

The effect of the TiO2 support on H2 production rates in alcohol–water systems has
been the subject of a number of investigations [18,19,24]. For example, H2 production
from alcohols in uniform, one-dimensional brookite TiO2 nanorods is highly enhanced
by engineering their length [25]. Deeper understanding of the roles of the TiO2 support,
i.e., crystallite size, surface area and TiO2 phase composition may allow strategic and
step-change improvements in M/TiO2 photocatalyst design and performance. Rutile, a
stable polymorph of TiO2, generally has poor photocatalytic activity, owing to the fact
that it is a direct band gap semiconductor, which allows fast electron–hole pair recombi-
nation following photoexcitation [26]. Anatase, a relatively less stable polymorph, is an
indirect band gap semiconductor, typically displaying photocatalytic activities 1–2 orders
of magnitude higher than rutile due to longer charge carrier lifetimes [27]. Mixed phase
TiO2 (P25) catalysts have also been widely studied, owing to synergistic electron transfer
phenomena between the large proportion of Anatase phases and low proportion of rutile
phases [28]. It appears that H2 production using TiO2-based catalysts has reached its
plateau and there is only a marginal increase in rates. Further work needs to be focused
more on fundamental understanding using state-of-the-art facilities that bring progressive
improvements in capabilities. One-dimensional anatase TiO2 nanostructures, including
nanorods, nanotubes and nanofibers, which are produced hydrothermally, have favorable
one-dimensional charge carriers transfer, improved reactant adsorption, reduced catalyst
particle agglomeration in aqueous suspension, and lower e–h recombination [29]. Charge
recombination is a critical problem that has, so far, limited the efficiency of photocatalysis.
The holes are effectively confined to the width of the nanorods, whereas electrons are free
to move over the whole length due to their 1D structure [30].

Recent studies of M/TiO2 photocatalysts, where M = Pd, Pt, Au, Ag, Ni and Cu or
combinations thereof, have reported H2 production rates as high as 30–40 mmol g−1h−1 in
alcohol–water systems under realistic solar UV fluxes [12,18]. Optimal metal co-catalyst
loadings, 0.5−1.0 wt.% for Ni, Cu, Pd or Pt, and 1.5–4.0 wt.% for Au, largely depend upon
the geometry of the semiconductor support. The photogenerated charge carriers separation
in TiO2 is achieved by the formation of rectifying the Schottky barrier established at the
metal–semiconductor interface due to energy differences between the conduction band
of the semiconductor and the work function of the metal [20,31–34]. The work functions
of frequently used metals Pt, Pd, Au, Ni, Rh, Cu and Ag are 5.64, 5.12, 5.1, 4.98, 4.65 and
4.26 eV, respectively, and are larger than that of TiO2 (4.2 eV). Platinum (Pt) is the most



Hydrogen 2023, 4 194

frequently used metal to modify the TiO2 photocatalyst surfaces because of its suitable work
function [35], low overpotential for hydrogen evolution [36] and facilitation in the discharge
of electrons from semiconductor nanoparticles into the electrolyte by forming an ohmic
contact [37]. Major drawbacks of Pt used as a co-catalyst at TiO2 for water splitting are its
high cost and thermodynamically favorable back reaction of H2 and O2 at room temperature
under atmospheric pressure [38,39]. According to some reports, complete photocatalytic
decomposition of water is possible using Au, as compared with Pt, where the back reaction
of H2 and O2 can be avoided on the former [40]. Cu and Ni have attracted much attention
in recent years for hydrogen production due to the high synergism achieved when used
in combination with each other [12,41,42]. Recently, Chen and coworkers achieved the
highest hydrogen production activity (24.3 mmol h−1g−1) over Ni/TiO2 by completely
reducing the NiO over TiO2 under a constant stream of 10% H2 during calcination [43]. Cu
is frequently deposited as Cu(OH)2 over semiconductor supports to obtain metallic Cu by
in situ reduction of Cu(OH)2 during photoreactions [44,45].

Recently, palladium (Pd) has emerged as an efficient metal photocatalyst for water
splitting [46–51]. The density of states in the vicinity of the Fermi level is higher for
Pd than for Pt, Au and others, with the Fermi level of Pd being ∼0.2 eV higher than
the Fermi level of Pt (−10.8 eV). Pd also has a much lower electron affinity and, hence,
electron trapping capability, which may enable more facile electron transfer from Pd to
protons for water reduction. Additionally, the high surface area offered by Pd due to
the porous nature of metallic Pd may also contribute to its high activity [52]. It has been
established by many authentic studies that Pd is more active than Pt and Au due to
unique properties discussed later in this study [48,53]. Now, the whole focus is to prepare
such a conductive semiconductor support for Pd co-catalyst that will help to improve the
migration of photogenerated charge carriers to emerge at the surface. In this work, our
group prepared a rGO−TiO2 hybrid support and combined it with Pd metal co-catalysts
for maximum hydrogen production. This system showed outstanding results due to the
high synergism obtained by the high surface area of hybrid support and inherent electron
scavenging properties of Pd metal.

2. Materials and Methods

All the reagents used were of analytical grade and used without further purification.
Double distilled water was used in all the experiments. Commercially available Degussa
P25 was obtained from Evonik Industries, Germany.

2.1. Synthesis of GO/TiO2 Support

Sodium titanate (Na2Ti3O7) nanorods were prepared by hydrothermal treatment of
commercial TiO2 (P25) powder according to the method reported elsewhere [54]. Briefly,
TiO2 (P25) powder (1 g) was dispersed in 10 M NaOH (50 mL). The white suspension
obtained was sonicated for 15 min, stirred for 2 h and transferred into a 25 mL Teflon-lined
stainless steel autoclave. The autoclave was then placed in a convection oven and heated at
150 ◦C for 48 h. The white precipitates of Na2Ti3O7 thus obtained were collected by vacuum
filtration and washed repeatedly with double distilled water until the pH of washing liquid
was close to neutral. The Na2Ti3O7 nanostructures were converted to hydrogen titanate
(H2Ti3O7) nanostructures by ion exchange method by suspending the former in 0.1 M HCl
(500 mL) for 1 h. The H2Ti3O7 nanostructures were collected by vacuum filtration, washed
with double distilled water until the washing liquid was neutral to pH paper and finally
dried at 80 ◦C for 12 h. The highly crystalline TiO2 nanorods (TNRs) were obtained in air
by calcining H2Ti3O7 nanostructures at 400 ◦C for 2 h.

Graphene oxide (GO) was synthesized by modified Hummers method [55]. Finally, a
hybrid photocatalyst support GO–TNR with high surface area was synthesized through
simple deposition method. Briefly, a known amount of graphene was suspend in 30 mL
ethanol water mixture (1:1) and sonicated for 2 h. TNRs (200 mg) were added into the
above slurry, sonicated for 30 min and then finally stirred for 1 h, which resulted in a
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homogenous blackish mixture. The GO–TNR hybrid support was recovered through
vacuum filtration, washed several times with distilled water and dried in air at 100 ◦C.
GO/TNR with 1–4 wt.% GO loading were obtained.

2.2. Metal Co-Catalyst Loading

Pt, Pd and Au were loaded through surfactant-assisted NaBH4 reduction method.
Briefly, 250 mg of GO–TNR was added into 30 mL of distilled water in a flask and stirred for
1 h to make a homogeneous slurry. A Polyvinlyalcohol (PVA) solution (PVA/metal = 2:1)
was prepared in 20 mL of distilled water at 100 ◦C in a separate beaker. Metal ions were
encapsulated by adding PVA solution to required amount of metal solution and stirred
for a further 1 h. Later, metal solution was added to the GO–TNR slurry drop wise with
vigorous stirring. The metal ions were reduced and deposited on GO–TNR during the
slow addition of NaBH4 solution (metal/NaBH4 = 1:10) under continuous stirring. The
slurry was stirred for a further 5 h, precipitates were vacuum filtered, washed two times
with distilled water and dried in oven at 80 ◦C for 16 h. Characterization results (shown
later) confirmed that NaBH4 addition not only deposits metal on the hybrid support, it
also reduces graphene oxide (rGO). The final photocatalyst powders with 1 wt.% Pd and
1–4 wt.% rGO were obtained by calcining the powder at 350 ◦C for 5 h. The subscript in the
photocatalyst indicates wt.% loading. The Pd metal loading was confirmed by inductively
coupled plasma optical emission spectrometry (ICP-OES) using a PerkinElmer (Optima
8300) spectrometer.

2.3. Hydrogen Production Experiments

Photocatalytic hydrogen production tests were conducted in a Pyrex reactor (140 mL).
Initial tests were conducted by changing catalyst amounts in a 1–20 mg range and the
maximum H2 production rate was obtained with 2.5 mg in the reactor containing 25 mL
of an aqueous alcohol–water mixture (20 vol.% ethanol or 5 vol.% glycerol). The factors
effecting optimal loading are discussed elsewhere [44,56]. Prior to the start of each photo-
catalytic experiment, the reactor was continuously bubbled with nitrogen at a flow rate of
10 mL min−1 for 30 min to remove dissolved and headspace oxygen. Molecular oxygen
can trap electrons from the TiO2 conduction band to produce superoxide radicals, which
can subsequently mineralize organic sacrificial agents [57]. A Spectroline model SB-100P/F
lamp (100 W, 365 nm) at a distance of 10 cm from the reactor was used for UV light exci-
tation of the photocatalysts. The photon flux measured at the sample was ~6.5 mW cm−2

(comparable to UV flux in sunlight). Hydrogen generation was monitored by taking head
space gas samples (0.5 mL) at regular time intervals with a gas tight syringe and injecting
them into a gas chromatograph (Shimadzu GC 2014) equipped with a TCD detector and
molecular sieve capillary column (length = 25 m; ID = 0.32 mm; average thickness 0.50 µm).
H2 produced through photoreaction was quantified against an internal calibration curve.
The photocatalytic tests for each sample were repeated at least three times for accuracy. To
assess the catalyst’s stability, four consecutive hydrogen production tests were carried out,
where each test lasted for four hours, for the most active Pd1/rGO4TNRs catalysts using
a 5% glycerol–water mixture. The catalyst was filtered, dried and added to the fresh 5%
glycerol–water mixture each time before starting the subsequent test.

2.4. Photocatalysts’ Characterization

Powder XRD patterns were collected with a Siemens D−5000 Diffractometer equipped
with a curved graphite filter monochromator. XRD data were collected over the 2θ range
10–70θ (step size 0.058, scan rate 2◦ min−1) by using CuKα X-rays (l = 1.5418 A, 40 mA,
40 kV). XRD confirmed that TNR were made up of anatase phases. TNR crystallite size
(L) was determined using the Scherer equation (L = 0.9λ/βcosθ) and line-widths of the
anatase (101) reflection at 2θ = 25.38. UV/Vis absorbance spectra were collected over the
wavelength range 200–900 nm with a Thermo Fisher Scientific UV/Vis spectrophotometer
equipped with a praying mantis diffuse reflectance accessory. The Brunauer–Emmett–Teller
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(BET) method was used to measure the surface area of all the samples. TEM analyses were
performed by using a Philips CM12/STEM Electron Microscope, PW 6030 (120 kV). XPS
data were collected by using a Kratos Axis UltraDLD equipped with a hemispherical
electron energy analyzer and an analysis chamber at base pressure ~1 × 109 Torr. Samples
were excited by using monochromatic AlKα X-rays (1486.69 eV) with the X-ray source
operating at 150 W. Samples were gently pressed into ~0.1 mm thick pellets for the analyses.
A charge neutralization system was used to alleviate sample charge build up during
analysis. Survey scans were collected at a pass energy of 80 eV over the binding energy
range 1200–0 eV, whereas core level scans were collected with a pass energy of 20 eV. The
spectra were calibrated against the C1s signal at 284.80 eV from adventitious hydrocarbons.
Steady-state and time resolved photoluminescence (PL) measurements were carried out
using a Flau Time 300 (FT-300) steady-state and lifetime spectrometer, PicoQuant GmbH,
Berlin, Germany. The PL was measured using a pulsed LED laser excitation source, PLS-
300, centered at 305 nm with a full-width half-maximum (FWHM) of ~416 ps and pulse
energy 0.077 pJ. The PL curves were fitted using Easy Tau (Version 2.2, PicoQuant, GmbH
Berlin, Germany) and FluoFit (Version 3.3, PicoQuant, GmbH Berlin, Germany) software.
The electrochemical experiments were performed using an SP-300, Bio-Logic Potentiostate
with three electrode system, catalyst ink impregnated glassy carbon (GCE) as the working
electrode, platinum wire as an auxiliary electrode (counter) and Ag/AgCl as reference
electrode and with 0.1 M aqueous Na2SO3 as the electrolyte. Electrochemical impedance
spectroscopy (EIS) experiments were carried out in the frequency range of 1.0 MHz to
1.0 Hz with amplitude of 10 mV at 200 mV potential (vs. Ag/AgCl). We did not characterize
the recovered catalysts due to no observable change in the catalyst activity. In general,
metal-supported TiO2 photocatalysts remained stable during photoreactions due to the
stability of TiO2 itself, as well as metal in a reducing environment. In the case of non-oxide
semiconductors, for example, CdS, we have reported significant changes [58,59].

3. Results and Discussion
3.1. Characterization

Inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed that
the Pd loading was similar to its initial nominal loading. The Brunauer–Emmett–Teller
(BET) surface areas for P25 and TNR were found to be 49 and 62 m2 g−1, similar to
the literature values. The metal loading did not change the surface area. Figure 1a, the
UV-visible diffuse reflectance spectroscopy (DRS), shows that TNR absorbs strongly in
the UV region up to 380 nm, and after that there is sharp decrease in the absorbance
edge and no significant absorbance in the visible region. rGO shows absorbance through
the UV up to the visible region. After depositing Pd on the TNR, the absorbance edge
is clearly extended into the visible region, indicating Pd deposition over support. This
extension in absorption has been attributed to a combination of metal d−d transitions
and formation of −O−Pd−O− species at the TNRs’ surface [53]. When Pd is deposited
over rGO/TNR composites, the absorbance by palladium is conspicuously dominated by
graphene, and there are new absorption features in the absorption spectra, a solid evidence
of strong electronic synergism among loaded Pd and TNRs−graphene hybrid support.
The strong absorption in the visible region is attributed to the black color and formation
of the Ti−O−C bond in the hybrid support [60]. With the increase in rGO content over
TNRs, the absorbance is further increased. The UV-visible diffuse reflectance spectroscopy
of rGO-TNRs and Pd/rGO looks exactly like Pd/rGO-TNRs and rGO alone, respectively.

Figure 1b, the XRD pattern of rGO, exhibits a typical broad peak at 2θ = 25◦ (hkl = 002),
which is ascribed to disordered stacks of weakly crystalline rGO nanosheets [61]. The
hydrothermally prepared TNRs calcined at 400 ◦C show all peaks of anatase phase. The
XRD pattern of the most active photocatalysts Pd1/rGO4−TNRs showed no obvious peak
of Pd due to their low concentration and high dispersion. The diffraction peak of rGO
is suppressed by a strong peak of anatase (101) in the region between 2θ = 25–30◦. If we
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closely observe this region, the anatase (101) peak is clearly widened at the base, implying
the presence of rGO.
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Figure 2a, the FTIR spectrum of rGO, is characterized by a strong and relatively broad
carbonyl peak at 1720 cm−1, accompanied by an aromatic C=peak at 1618 cm−1, confirming
the formation of rGO and the presence of sp2, as well as sp3 carbon atoms [51,62]. The
broad absorption peak between 3000 and 3500 cm−1 is due to the acidic −OH and moisture
content. The Raman spectrum of rGO in Figure 2b clearly shows the D band at 1337 cm−1

and G bands at 1571 cm−1. The D band is due to the disorder present in the graphitic plane
(sp3 defects and disorders) and the G band refers to the presence of in-plane vibrations of
sp2 carbon atoms in rGO [63,64]. Raman spectra of Pd1/rGO4 catalyst shows that the peak
intensity of D band is decreased as compared with pristine rGO, due to the reduction of
rGO by the addition of NaBH4, which decreased the disorder in the graphitic planes. A
slight shift observed in the D band, higher D band to G band intensity ratio and overall
lower intensity is due to the presence of TNR.

Figure 3 shows the C 1s XPS spectra for Pd1/rGO4−TNR. After deconvolution, it is
clearly evident that the C1s spectrum contains seven peaks at 282.7, 284.5, 285, 286.5, 288,
289 and 290.9 eV, corresponding to the carbidic carbon (C≡C)2− as well as carbon bonded
to Pd, sp2 carbon (C=C), sp3 carbon (C-C, C-H), hydroxyl carbon (C-OH, C-O-C), carbonyl
carbon (C=O), carboxyl carbon (O-C=O) and π→π* satellites, respectively [65]. A peak area
ratio of more than five between sp2 carbon and hydroxyl carbon indicates the presence of
graphene in its reduced state [66]. Palladium is found to present as Pd and PdO. Given the
fact that Pd is reduced very easily under X-rays, it is most likely that it is mainly present
as PdO. This leads to the main reason behind the induction period observed during the
photoreforming reaction where PdO was converted into Pd metal to reach steady state
rates. We did not present Ti3d and O1s spectra, as they were similar to what has been
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reported elsewhere and did not carry any additional information [12,18,42,67,68]. Figure 4a
shows highly dispersed and well-shaped TNR with length ca. 50–70 nm. Figure 4b shows
rGO nanosheets that are folded at the edges and Pd nanoparticles of an average particle
size of 2–5 nm, which are uniformly distributed over the rGO sheets with no agglomerates.
After blending rGO with TNRs, Pd structural features are not clearly seen due to very low
loading amounts (4 wt.%). Figure 4c shows the hybrid nano-composites in which TiO2
nanorods are clearly interconnected by the rGO sheets. This type of hybrid structure is
highly beneficial for vectorial charge transfer from TiO2 to catalytically active metal sites for
proton reduction and enhancing the photocatalytic efficiency [69]. The intimate contacts in
the heterojunction of three components, i.e., TNRs, rGO and Pd particles are clearly noted
in Figure 4d.
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To probe into the electron transfer, kinetics photoluminescence (PL) experiments were
performed with as prepared materials as well as benchmark metal co-catalysts (Pt and
Au)-loaded TNRs. Charge carriers’ recombination in TNRs is expected to be suppressed
by deposition of Pt, Pd and Au due to the transfer of photo-excited electrons from the
conduction band of TNRs to metal nanoparticles. In Figure 5a, pristine TNRs give in-
tense photoluminescence signal due to the recombination of excited electrons with holes
following photoexcitation under 310 nm. Metal co-catalyst loading strongly attenuates
the photoluminescence signal of TNRs, with the extent of attenuation following the order
Pt/TNRs > Au/TNRs ≈ Pd/TNRs > Pd1/rGO4−TNRs. These data show that each metal
center is acting as a good electron acceptor, and thus increasing the lifetime of charge
carriers available for photoreactions. Importantly when rGO was deposited over TNRs
with the Pd, the intensity of the PL signal decreased many folds, which indicates rGO as
an excellent conduction band electrons sink as compared with all metals. A similar kind
of effect was noted when Pt and Au were deposited along rGO over TNRs, indicating the
electron-accepting ability of rGO dominates metals co-catalysts. Conversely, Pt exhibited
lower PL intensity than Pd and Au, in line with its superior activity for hydrogen produc-
tion than other metals. The EPR results of other researchers have indicated that Pt is more
efficient than Au in facilitating such charge transfer from Ti3+ to M [70]. Electrochemical
impedance spectroscopy (EIS) was performed to study the interfacial charge transfer. The
Nyquist plots of TNRs, Pd1/TNRs, Pt1/TNRs, Au1/TNRs and Pd/rGO4−TNRs are shown
in Figure 4b. In general, a smaller arc radius size indicates lower charge transfer resistance.
Among all materials, Pd/rGO4−TNRs shows the smallest arc radius, indicating that it
offers the lowest resistance/highest mobility to interfacial charge transfer. Pd/TNR and
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Au/TNRs show a similar ability to charge transfer, whereas Pt shows the best charge
transfer ability among the three metals. This charge transfer trend of Pt, Pd and Au is
directly related to their work functions (5.7, 5.6 and 5.3, respectively) [71]. The arc radius is
largest for the pristine TNRs reflecting the lowest charge mobility
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3.2. Photoreforming Activity

The hydrogen production rates of different materials were recorded in 5 vol.% glycerol−water
mixtures under UV flux of intensity ~6.5 mW cm−2 (comparable to UV flux in sunlight). Figure 6a
shows that once the induction period has elapsed, a constant rate of reaction is observed (inset
Figure 6a). As observed in XPS analysis, this induction period is related to PdO reduction to
Pd [56,67]. It is to be noted that pristine TNR does not show any induction period. In Figure 6b,
the pristine TNRs show very low rates of hydrogen production (2.2 mmol h−1g−1) due to the
higher recombination rates of photogenerated charge carriers. After the introduction of 1 wt.% of
Pd, the H2 production rate rapidly increased to 26.33 mmol h−1g−1 as the Pd metal suppressed the
charge carriers’ recombination by scavenging the conduction band electrons and acted as a cathodic
reduction/recombination site for protons. The addition of layered rGO with TNRs support resulted
in a significant improvement of hydrogen production activity, and the content of rGO in TNRs
had a significant influence in this unique hybrid combination. In the presence of rGO (1.0 wt.%) in
the hybrid support, the activity was enhanced to 30.66 mmol h−1g−1. The hydrogen production
rate gradually increased with the increase in rGO contents, and the highest value was achieved at
4 wt.% (41 mmol h−1g−1); after that, the rate started to decrease due to the shadowing effect on
support (discussed later).

Figure 7a explains the effect of the overall Pd loading amount over TNRs. The highest
rate of hydrogen production was achieved over TNRs at an overall nominal metal loading
amount of 1 wt.%. Recent studies proved that 0.5 wt.% Pd loading over P25 nanoparticles
showed the maximum rate of hydrogen production [13]. At the same time, both 1 and
0.5 wt.% Pd/P25 showed less activity than 1 wt.% on Pd/TNRs. The reason behind
the superior activities of TNRs compared with P25 is ascribed to their excellent charge
transportation and longer e−/h+ lifetime due to following features: 1. effective vectorial
transfer of photogenerated charges due to a nanorod structure; 2. the charge carriers
can not only move easily along the longitudinal direction, but they also have to travel
short distances to emerge at the surface transversely; 3. lower number of surface defects,
thus a small number of recombination sites; 4. TNRs support possesses high surface area
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(62 m2g−1) compared with P25 (49 m2g−1), and a greater proportion of reactive anatase
surface facets, such as anatase (101), as seen in Figure 4d, though further HRTEM studies
are needed to establish the nature of all the anatase facets exposed by the TNRs support [54].
A slight decrease in hydrogen production activity at 1.2 wt.% Pd loading over TNRs was
observed, and after that there was a gradual decrease in activity up to 2 wt.% loading. This
decrease in activity with an increased amount of metal loading has also been observed
by others [18]. It has been suggested that metal particle size, increased surface defect
concentration and shadowing of incoming light by metal nanoparticles might be behind
this. To clarify this, a systematic study using slurry phase reactions as well as model surfaces
is required. A lower amount of hydrogen production was also observed at 0.5 wt.% Pd
loading. This is due to the availability of fewer active metal sites over TNRs for proton
reduction or hydrogen recombination. As a consequence, a suitable content of Pd is crucial
for the optimized photocatalytic performance of Pd/rGO−TNRs photocatalysts.
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5 vol% glycerol/water mixtures. (a) and (b) show the total amount of H2 production as a function
of time and H2 production rates for different catalysts, respectively. The inset in (a) highlights the
induction period.

Figure 7b shows the comparison between three benchmark co-catalyst (Pt, Pd, Au)
loaded TNRs and Pd1/rGO4−TNRs photocatalysts in the current study. In 5 wt.% glycerol–
water system, 1 wt.% Pd/TNRs demonstrated superior hydrogen production than the other
two [13]. Under present conditions, the order of activity was observed as Pd > Pt > Au. It
has been established that metal co-catalyst particle size has no considerable effect on the
photo-catalytic activity, so the key factor to consider might be the work function of Pd, Pt,
Au and TNRs (5.7, 5.2, 5.1 and 4.26) [50]. Theoretically, Pt should be more active when
compared with Pd and Au due to the larger height of the Schottky barrier and other intrinsic
catalytic properties. The main reason behind this might be the favorable thermal back
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reaction of O2 and H2 to form water. Recently, palladium (Pd) has emerged as an efficient
metal co-catalyst compared with Au and Pt in water splitting because the density of states
in the vicinity of the Fermi level is higher for Pd than that for Pt and Au, with the Fermi level
of Pd being ∼0.2 eV higher than the Fermi level of Pt (−10.8 eV) [13,46,48,49]. Pd also has
a much lower electron affinity and, hence, electron trapping capability, which may enable
more facile electron transfer from Pd to proton for water reduction [47]. Su and co-workers
probed the kinetics of the photogenerated electrons on metal semiconductor photocatalyst
systems and found that a fast proton reduction occurs on Pd/TiO2 as compared with
Au/TiO2. It was revealed that Pd shows a slow reverse transfer process of electrons from
metal to TiO2 (low krev) for the trapped photogenerated electrons. Pd most likely provides
an ohmic contact, whereas Au shows capacitive properties [72]. Additionally, the high
surface area offered by Pd due to the porous nature of metallic Pd may also contribute to
its high activity [52]. The combination of the above factors is likely the reason behind the
selection of Pd for further experiments with highly efficient hybrid rGO−TNRs support.
Moreover, Pd co-catalyst was also loaded over Anatase TiO2 nanoparticles prepared by
sol-gel (SG) and hydrothermal (HT) techniques. Pd1/rGO4−TNRs photocatalyst showed
superior hydrogen production activity than both Pd/SG (anatase) and Pd/HT (anatase)
due to the high synergism achieved by efficient hybrid organic−inorganic support and
the inherent catalytic properties of Pd metal. From Table 1, it can be noted that the
unique photocatalyst developed in this study gives far better hydrogen production rates as
compared with catalysts reported in the literature.
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Table 1. Comparison of hydrogen production rates on metal-supported TiO2 catalysts. The subscripts
with metal and graphene indicate their wt.% with respect to oxide support. (A = anatase; R = rutile;
NR = nanorods; NS = nanosheets; NF = nanofibers).

Photocatalyst Structure Sacrificial Reagents Irradiation H2 Production
(mmol g−1h−1) Ref.

Pd1−rGO4/TNRs 5% glycerol–water 100 W (UV) 41.0 Present Study

Cu0.8-Ni0.2/TNR130-400 5% glycerol–water 100 W (UV) 35.1 2017 [18]

Pt0.5−rGO0.5/P25 30% methanol–water 300 W(UV) 0.750 2012 [73]

Pt0.5−rGO1/TiO2-A (NS) 25% methanol–water 350 W (UV) 0.736 2011 [74]

rGO(sheets)2/P25 (NR) Na2S and M Na2SO3 500 W (UV) 0.054 2012 [75]

rGO5/TiO2-A Na2S and Na2SO3 (UV) 0.085 2010 [76]

rGO20/P25 20% ethanol–water 200 W (UV) 0.74 2011 [60]

Pt0.05−Graphen0.7/P25 10% methanol–water 300 W(UV) 0.1 2012 [77]

MoS2(0.5)/GO0.5−TiO2-A 25% ethanol–water 300 W (UV) 2.06 2012 [69]

GO/CuO2−P25 10% methanol–water 500 W (UV) 2.9 2013 [78]

CuO1.25/TiO2 80% ethanol–water 100 W (UV) 20.3 2013 [79]

Ni(OH)(0.5)/P25 25% methanol–water 3 W (UV) 3.056 2011 [80]

Ni1.25/P25 95% ethanol–water 100 W (UV) 20.7 2015 [19]

Ni(OH)2(0.5)/P25 25% methanol–water 3 W (UV) 3.056 2011 [80]

Au4/P25 5% ethanol–water 450 W (UV-Vis) 6.12 2013 [81]

Au0.8/TiO2-A 25% methanol–water 400 W (UV) 1.54 2014 [82]

Au1/TiO2-A 6% methanol–water 250 W (UV-Vis) 8 2008 [83]

Au1/TiO2-A 50% methanol–water 2.4 W (UV) 8.4 2012 [84]

Au0.5-Pt0.5/TiO2-A 50% ethanol–water 125 W (UV) 8 2013 [85]

Pd1/TiO2-A+R (NS) 50% ethanol–water 8 W UV-B 16.2 2015 [86]

Au1.5/P25 80% ethanol–water 100 W (UV) 32.2 2015 [54]

Au0.25-Pd0.75/P25 25% glycerol–water 100 W (UV) 19.6 2014 [72]

Pt1/P25 10% glycerol–water 200 W (UV) 27.1 2015 [13]

NiO(2)/TiO2-A+ R 16% glycerol–water 500 W (UV) 1.23 2016 [87]

Table 2 summarizes structural, chemical composition and hydrogen evolution data
for different photocatalysts and shows that Pd1/rGO4−TNRs is the most active among all
the tested catalysts. The stability of photocatalytic systems is a crucial issue that requires
adequate understanding. Long-term performance needs to be assessed even though no one
has reported any stability issue. Since strongly reducing conditions preserves the metal
in its metallic state and keeps it stable under photoreaction conditions, it is commonly
accepted that non-Nobel metals are stable systems [42,88]. The stability and reactivity of the
Pd1/rGO4−TNRs photocatalyst was checked by consecutive runs for a total time period of
16 h without any sign of deactivation, as shown in Figure 8. A considerable increase in rate
was observed for the second and third runs and a rate of 46 mmol g−1h−1 was achieved.
This indicates a very high stability and activity of our best performing photocatalyst with
time. Ongoing from the third to fourth run, a slight decrease in line slope was observed
due to the deposition of photocatalyst particles (clearly seen with the naked eye) on the
reactor walls with time, thus scattering away a small fraction of incoming light radiation,
and also potentially due to the decrease in the sacrificial reagent.
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Table 2. Summarized structural, chemical composition and hydrogen evolution data for
different photocatalysts.

Photocatalyst BET Surface Area
(m2 g−1)

TNR Length
(nm)

rGO Nominal
(wt.%) Pd wt.% by XPS H2 Production

(mmol h−1g−1)

TNR 60.45 50–70 − − 2.00

Pd1−rGO1/TNRs(TiO2) 60.25 50–70 1 − 30.60

Pd1−rGO2/TNRs(TiO2) 61.05 50–70 2 − 34.16

Pd1−rGO3/TNRs(TiO2) 61.75 50–70 3 − 37.66

Pd1−rGO4/TNRs(TiO2) 62 50–70 4 0.85 41.00
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Figure 8. Consecutive runs for the hydrogen generation tests with Pd1/rGO4−TNRs catalysts using
5% glycerol−water mixtures.

3.3. Hydrogen Production Mechanism

Based on the characterization, unique optical and charge transfer properties of hybrid
support and efficient hydrogen production activities on the Pd1−rGO4/TNRs photocata-
lyst, a possible hydrogen production mechanism is proposed and is illustrated in Figure 9.
Upon irradiation, e−/h+ pairs are generated in the TNRs; however, these photoinduced
e−/h+ pairs are likely to recombine if not quenched efficiently. We loaded inorganic sup-
port (TNRs) with highly conductive rGO, which not only quenched the electron from
the conduction band of TNRs but also acted as an efficient electron transport highway
to Pd nanoparticles. Secondly, Pd nanoparticles quenched the electrons directly from
the conduction band of TNRs and also received the charge through highly conductive
rGO sheets. Previous studies have shown that the CB electrons of TiO2 can be injected
into the rGO sheets because the redox potential of rGO is slightly lower than the CB of
anatase TiO2 [69]. The mobility of these electrons on the graphene sheets is very high.
Thus, rGO greatly enhanced the charge separation and provided additional sites for proton
reduction/recombination along with Pd metal.
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rGO(e−) + H+ → rGO + H˙

Pd(e−) + H+ → Pd + H˙

H˙+ H˙→ H2

4. Conclusions

The photocatalytic activity depends upon photogenerated charge carriers scavenging
from the semiconductor support at the nano- to picoseconds time scale. To achieve this, an
inorganic–organic hybrid support containing TiO2 nanorods blended with an extraordinary
conductive graphene oxide was fabricated. This support showed a great potential to
transport charge carriers to loaded metal. rGO present in support performed a dual
function, including effective electron quenching from the conduction band of TiO2 nanorods
and working as a highly conductive electron pathway for Pd nanoparticles deposited over
support. Pd1/rGO4−TNRs photocatalyst containing 4 wt.% rGO contents in the support
and 1 wt.% nominal Pd loading demonstrated excellent hydrogen production activity
~41 mmols h−1g−1, which is 4 and 40 times greater than benchmark Au/TiO2 and pristine
P25. This study demonstrates that highly conductive rGO can be used to effectively enhance
photoreforming reaction rates by allowing additional mechanisms for electron transfer
between TiO2 and organic adsorbates.
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