# Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Data

## 3. Distributions of End-Use Sector Over Time

## 4. Usage Distributions

## 5. Trends in Capacity over Time and Relative to Technology and End-Use Sector

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Probability Distribution Distance

**Proposition**

**A1.**

**Proof.**

## References

- Anandakugan, N.; U.S. Energy Information Administration. Coal Explained: Coal and the Environment. 2022. Available online: https://www.eia.gov/energyexplained/coal/coal-and-the-environment.php (accessed on 26 November 2022).
- Doenitz, W.; Schmidberger, R.; Steinheil, E.; Streicher, R. Hydrogen production by high temperature electrolysis of water vapour. Int. J. Hydrog. Energy
**1980**, 5, 55–63. [Google Scholar] [CrossRef] - Wendt, H.; Plzak, V. Hydrogen production by water electrolysis / Wasserstoffproduktion durch Elektrolyse von Wasser. Kerntechnik
**1991**, 56, 22–28. [Google Scholar] [CrossRef] - Khaselev, O. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy
**2001**, 26, 127–132. [Google Scholar] [CrossRef] - Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proc. IEEE
**2012**, 100, 410–426. [Google Scholar] [CrossRef] - Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal.
**2018**, 39, 390–394. [Google Scholar] [CrossRef] - Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci.
**2010**, 36, 307–326. [Google Scholar] [CrossRef] - Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy
**2005**, 78, 661–669. [Google Scholar] [CrossRef] - Grigoriev, S.; Porembsky, V.; Fateev, V. Pure hydrogen production by PEM electrolysis for hydrogen energy. Int. J. Hydrog. Energy
**2006**, 31, 171–175. [Google Scholar] [CrossRef] - Bessarabov, D.G.; Wang, H.; Li, H.; Zhao, N. (Eds.) PEM Electrolysis for Hydrogen Production: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Guo, Y.; Li, G.; Zhou, J.; Liu, Y. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conf. Ser. Earth Environ. Sci.
**2019**, 371, 042022. [Google Scholar] [CrossRef] - Yilmaz, C.; Kanoglu, M. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis. Energy
**2014**, 69, 592–602. [Google Scholar] [CrossRef] - Rozendal, R.; Hamelers, H.; Euverink, G.; Metz, S.; Buisman, C. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Energy
**2006**, 31, 1632–1640. [Google Scholar] [CrossRef] - Call, D.; Logan, B.E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environ. Sci. Technol.
**2008**, 42, 3401–3406. [Google Scholar] [CrossRef] [PubMed] - Rai, C.; Bhui, B.; V, P. Techno-economic analysis of e-waste based chemical looping reformer as hydrogen generator with co-generation of metals, electricity and syngas. Int. J. Hydrog. Energy
**2022**, 47, 11177–11189. [Google Scholar] [CrossRef] - Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The intensification technologies to water electrolysis for hydrogen production—A review. Renew. Sustain. Energy Rev.
**2014**, 29, 573–588. [Google Scholar] [CrossRef] - Chakik, F.E.; Kaddami, M.; Mikou, M. Effect of operating parameters on hydrogen production by electrolysis of water. Int. J. Hydrog. Energy
**2017**, 42, 25550–25557. [Google Scholar] [CrossRef] - Wu, L.; Zhou, Z.; Xiao, Y.; Xu, Z.; Li, X. Hydrogen evolution reaction activity and stability of sintered porous Ni-Cu-Ti-La
_{2}O_{3}cathodes in a wide pH range. Int. J. Hydrog. Energy**2022**, 47, 11101–11115. [Google Scholar] [CrossRef] - Ikeda, H.; Misumi, R.; Kojima, Y.; Haleem, A.A.; Kuroda, Y.; Mitsushima, S. Microscopic high-speed video observation of oxygen bubble generation behavior and effects of anode electrode shape on OER performance in alkaline water electrolysis. Int. J. Hydrog. Energy
**2022**, 47, 11116–11127. [Google Scholar] [CrossRef] - Zhang, H.; Lin, G.; Chen, J. Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production. Int. J. Hydrog. Energy
**2010**, 35, 10851–10858. [Google Scholar] [CrossRef] - Shit, S.; Bolar, S.; Kolya, H.; Kang, C.W.; Murmu, N.C.; Kuila, T. Assisting the formation of S-doped FeMoO
_{4}in lieu of an iron oxide/molybdenum sulfide heterostructure: A unique approach towards attaining excellent electrocatalytic water splitting activity. Int. J. Hydrog. Energy**2022**, 47, 11128–11142. [Google Scholar] [CrossRef] - Tong, L.; Liu, Y.; Song, C.; Zhang, Y.; Latthe, S.S.; Liu, S.; Xing, R. (Fe, Ni)S
_{2}@MoS_{2}/NiS_{2}hollow heterostructure nanocubes for high-performance alkaline water electrolysis. Int. J. Hydrog. Energy**2022**, 47, 11143–11152. [Google Scholar] [CrossRef] - Liang, S.; Sui, G.; Li, J.; Guo, D.; Luo, Z.; Xu, R.; Yao, H.; Wang, C.; Chen, S. ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy
**2022**, 47, 11190–11202. [Google Scholar] [CrossRef] - Khasanah, R.A.N.; Lin, H.C.; Ho, H.Y.; Peng, Y.P.; Hsiao, H.L.; Wang, C.R.; Chien, F.S.S. Photoelectrocatalytic hydrolysis of ammonia borane by electrochemical deposited cuprous oxide on titanium dioxide nanotube arrays. Int. J. Hydrog. Energy
**2022**, 47, 11203–11210. [Google Scholar] [CrossRef] - Liu, Y.; Shi, X.; Liu, X.; Li, X. Facile synthesis of C-Ta
^{4+}co-doped NaTaO_{3}and rGO nanocomposites with enhanced visible light photocatalytic performance. Int. J. Hydrog. Energy**2022**, 47, 11211–11223. [Google Scholar] [CrossRef] - Ulate-Kolitsky, E.; Tougas, B.; Huot, J. First Hydrogenation of TiFe with Addition of 20 wt.% Ti. Hydrogen
**2022**, 3, 379–388. [Google Scholar] [CrossRef] - He, J.; Han, X.; Xiang, H.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Aluminum Cation Doping in Ruddlesden-Popper Sr2TiO4 Enables High-Performance Photocatalytic Hydrogen Evolution. Hydrogen
**2022**, 3, 501–511. [Google Scholar] [CrossRef] - Sołowski, G.; Shalaby, M.; Özdemir, F.A. Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review. Hydrogen
**2022**, 3, 531–549. [Google Scholar] [CrossRef] - Shelepova, E.V.; Maksimova, T.A.; Bauman, Y.I.; Mishakov, I.V.; Vedyagin, A.A. Experimental and Simulation Study on Coproduction of Hydrogen and Carbon Nanomaterials by Catalytic Decomposition of Methane-Hydrogen Mixtures. Hydrogen
**2022**, 3, 450–462. [Google Scholar] [CrossRef] - Vedyagin, A.A.; Mishakov, I.V.; Korneev, D.V.; Bauman, Y.I.; Nalivaiko, A.Y.; Gromov, A.A. Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons. Hydrogen
**2021**, 2, 122–133. [Google Scholar] [CrossRef] - Lys, A.; Fadonougbo, J.O.; Faisal, M.; Suh, J.Y.; Lee, Y.S.; Shim, J.H.; Park, J.; Cho, Y.W. Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review. Hydrogen
**2020**, 1, 38–63. [Google Scholar] [CrossRef] - Heinemann, N.; Wilkinson, M.; Adie, K.; Edlmann, K.; Thaysen, E.M.; Hassanpouryouzband, A.; Haszeldine, R.S. Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises? Hydrogen
**2022**, 3, 550–563. [Google Scholar] [CrossRef] - Pistidda, C. Solid-State Hydrogen Storage for a Decarbonized Society. Hydrogen
**2021**, 2, 428–443. [Google Scholar] [CrossRef] - Ekhtiari, A.; Flynn, D.; Syron, E. Green Hydrogen Blends with Natural Gas and Its Impact on the Gas Network. Hydrogen
**2022**, 3, 402–417. [Google Scholar] [CrossRef] - Lattin, W.; Utgikar, V. Transition to hydrogen economy in the United States: A 2006 status report. Int. J. Hydrog. Energy
**2007**, 32, 3230–3237. [Google Scholar] [CrossRef] - Park, S. The country-dependent shaping of ‘hydrogen niche’ formation: A comparative case study of the UK and South Korea from the innovation system perspective. Int. J. Hydrog. Energy
**2013**, 38, 6557–6568. [Google Scholar] [CrossRef] - Yuan, K.; Lin, W. Hydrogen in China: Policy, program and progress. Int. J. Hydrog. Energy
**2010**, 35, 3110–3113. [Google Scholar] [CrossRef] - Collera, A.A.; Agaton, C.B. Opportunities for production and utilization of green hydrogen in the Philippines. Int. J. Energy Econ. Policy
**2021**, 11, 37–41. [Google Scholar] [CrossRef] - Ramirez-Salgado, J.; Estrada-Martinez, A. Roadmap towards a sustainable hydrogen economy in Mexico. J. Power Sources
**2004**, 129, 255–263. [Google Scholar] [CrossRef] - Touili, S.; Alami Merrouni, A.; Azouzoute, A.; El Hassouani, Y.; Amrani, A.i. A technical and economical assessment of hydrogen production potential from solar energy in Morocco. Int. J. Hydrog. Energy
**2018**, 43, 22777–22796. [Google Scholar] [CrossRef] - Apak, S.; Atay, E.; Tuncer, G. Renewable hydrogen energy regulations, codes and standards: Challenges faced by an EU candidate country. Int. J. Hydrog. Energy
**2012**, 37, 5481–5497. [Google Scholar] [CrossRef] - James, N.; Menzies, M. Spatio-temporal trends in the propagation and capacity of low-carbon hydrogen projects. Int. J. Hydrog. Energy
**2022**, 47, 16775–16784. [Google Scholar] [CrossRef] - Bridgeland, R.; Chapman, A.; McLellan, B.; Sofronis, P.; Fujii, Y. Challenges toward achieving a successful hydrogen economy in the US: Potential end-use and infrastructure analysis to the year 2100. Clean. Prod. Lett.
**2022**, 3, 100012. [Google Scholar] [CrossRef] - Saeedmanesh, A.; Kinnon, M.A.M.; Brouwer, J. Hydrogen is essential for sustainability. Curr. Opin. Electrochem.
**2018**, 12, 166–181. [Google Scholar] [CrossRef] - Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy
**2020**, 45, 3847–3869. [Google Scholar] [CrossRef] - Pleshivtseva, Y.; Derevyanov, M.; Pimenov, A.; Rapoport, A. Comprehensive review of low carbon hydrogen projects towards the decarbonization pathway. Int. J. Hydrog. Energy
**2023**, 48, 3703–3724. [Google Scholar] [CrossRef] - Manchein, C.; Brugnago, E.L.; da Silva, R.M.; Mendes, C.F.O.; Beims, M.W. Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies. Chaos Interdiscip. J. Nonlinear Sci.
**2020**, 30, 041102. [Google Scholar] [CrossRef] [PubMed] - James, N.; Menzies, M.; Bondell, H. Comparing the dynamics of COVID-19 infection and mortality in the United States, India, and Brazil. Phys. D Nonlinear Phenom.
**2022**, 432, 133158. [Google Scholar] [CrossRef] - Li, H.J.; Xu, W.; Song, S.; Wang, W.X.; Perc, M. The dynamics of epidemic spreading on signed networks. Chaos Solitons Fractals
**2021**, 151, 111294. [Google Scholar] [CrossRef] - Blasius, B. Power-law distribution in the number of confirmed COVID-19 cases. Chaos Interdiscip. J. Nonlinear Sci.
**2020**, 30, 093123. [Google Scholar] [CrossRef] - James, N.; Menzies, M. Estimating a continuously varying offset between multivariate time series with application to COVID-19 in the United States. Eur. Phys. J. Spec. Top.
**2022**, 231, 3419–3426. [Google Scholar] [CrossRef] - Perc, M.; Miksić, N.G.; Slavinec, M.; Stožer, A. Forecasting COVID-19. Front. Phys.
**2020**, 8, 127. [Google Scholar] [CrossRef][Green Version] - Machado, J.A.T.; Lopes, A.M. Rare and extreme events: The case of COVID-19 pandemic. Nonlinear Dyn.
**2020**, 100, 2953–2972. [Google Scholar] [CrossRef] [PubMed] - James, N.; Menzies, M. Global and regional changes in carbon dioxide emissions: 1970–2019. Phys. A Stat. Mech. Appl.
**2022**, 608, 128302. [Google Scholar] [CrossRef] - Khan, M.K.; Khan, M.I.; Rehan, M. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov.
**2020**, 6, 1. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M. Equivalence relations and L
^{p}distances between time series with application to the Black Summer Australian bushfires. Phys. D Nonlinear Phenom.**2023**, 448, 133693. [Google Scholar] [CrossRef] - Drożdż, S.; Kwapień, J.; Oświęcimka, P. Complexity in Economic and Social Systems. Entropy
**2021**, 23, 133. [Google Scholar] [CrossRef] [PubMed] - James, N.; Menzies, M.; Gottwald, G.A. On financial market correlation structures and diversification benefits across and within equity sectors. Phys. A Stat. Mech. Appl.
**2022**, 604, 127682. [Google Scholar] [CrossRef] - Liu, Y.; Cizeau, P.; Meyer, M.; Peng, C.K.; Stanley, H.E. Correlations in economic time series. Phys. A Stat. Mech. Appl.
**1997**, 245, 437–440. [Google Scholar] [CrossRef][Green Version] - Basalto, N.; Bellotti, R.; Carlo, F.D.; Facchi, P.; Pantaleo, E.; Pascazio, S. Hausdorff clustering of financial time series. Phys. A Stat. Mech. Appl.
**2007**, 379, 635–644. [Google Scholar] [CrossRef][Green Version] - Wątorek, M.; Kwapień, J.; Drożdż, S. Financial Return Distributions: Past, Present, and COVID-19. Entropy
**2021**, 23, 884. [Google Scholar] [CrossRef] - Prakash, A.; James, N.; Menzies, M.; Francis, G. Structural Clustering of Volatility Regimes for Dynamic Trading Strategies. Appl. Math. Financ.
**2021**, 28, 236–274. [Google Scholar] [CrossRef] - Drożdż, S.; Grümmer, F.; Ruf, F.; Speth, J. Towards identifying the world stock market cross-correlations: DAX versus Dow Jones. Phys. A Stat. Mech. Appl.
**2001**, 294, 226–234. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M.; Chin, K. Economic state classification and portfolio optimisation with application to stagflationary environments. Chaos Solitons Fractals
**2022**, 164, 112664. [Google Scholar] [CrossRef] - Gębarowski, R.; Oświęcimka, P.; Wątorek, M.; Drożdż, S. Detecting correlations and triangular arbitrage opportunities in the Forex by means of multifractal detrended cross-correlations analysis. Nonlinear Dyn.
**2019**, 98, 2349–2364. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M. A new measure between sets of probability distributions with applications to erratic financial behavior. J. Stat. Mech. Theory Exp.
**2021**, 2021, 123404. [Google Scholar] [CrossRef] - Sigaki, H.Y.D.; Perc, M.; Ribeiro, H.V. Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market. Sci. Rep.
**2019**, 9, 1440. [Google Scholar] [CrossRef] [PubMed][Green Version] - Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanisz, T.; Wątorek, M. Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19. Entropy
**2020**, 22, 1043. [Google Scholar] [CrossRef] - James, N.; Menzies, M. Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time. Nonlinear Dyn.
**2022**, 107, 4001–4017. [Google Scholar] [CrossRef] - Drożdż, S.; Minati, L.; Oświęcimka, P.; Stanuszek, M.; Wątorek, M. Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market. Chaos: Interdiscip. J. Nonlinear Sci.
**2020**, 30, 023122. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wątorek, M.; Drożdż, S.; Kwapień, J.; Minati, L.; Oświęcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global cryptocurrency market. Phys. Rep.
**2021**, 901, 1–82. [Google Scholar] [CrossRef] - James, N.; Menzies, M. Dual-domain analysis of gun violence incidents in the United States. Chaos Interdiscip. J. Nonlinear Sci.
**2022**, 32, 111101. [Google Scholar] [CrossRef] - Perc, M.; Donnay, K.; Helbing, D. Understanding Recurrent Crime as System-Immanent Collective Behavior. PLoS ONE
**2013**, 8, e76063. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M.; Chok, J.; Milner, A.; Milner, C. Geometric persistence and distributional trends in worldwide terrorism. Chaos Solitons Fractals
**2023**, 169, 113277. [Google Scholar] [CrossRef] - Ribeiro, H.V.; Mukherjee, S.; Zeng, X.H.T. Anomalous diffusion and long-range correlations in the score evolution of the game of cricket. Phys. Rev. E
**2012**, 86, 022102. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M. Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes. Stat. Comput.
**2022**, 32, 45. [Google Scholar] [CrossRef] - Merritt, S.; Clauset, A. Scoring dynamics across professional team sports: Tempo, balance and predictability. EPJ Data Sci.
**2014**, 3, 4. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M.; Bondell, H. In search of peak human athletic potential: A mathematical investigation. Chaos Interdiscip. J. Nonlinear Sci.
**2022**, 32, 023110. [Google Scholar] [CrossRef] - Clauset, A.; Kogan, M.; Redner, S. Safe leads and lead changes in competitive team sports. Phys. Rev. E
**2015**, 91, 062815. [Google Scholar] [CrossRef][Green Version] - International Energy Agency. Hydrogen Projects Database. 2022. Available online: https://www.iea.org/data-and-statistics/data-product/hydrogen-projects-database (accessed on 1 November 2022).
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc.
**1963**, 58, 236–244. [Google Scholar] [CrossRef] - Szekely, G.J.; Rizzo, M.L. Hierarchical Clustering via Joint Between-Within Distances: Extending Ward’s Minimum Variance Method. J. Classif.
**2005**, 22, 151–183. [Google Scholar] [CrossRef] - Müllner, D. Fastcluster: Fast Hierarchical, Agglomerative Clustering Routines forRandPython. J. Stat. Softw.
**2013**, 53, 1–18. [Google Scholar] [CrossRef][Green Version] - James, N.; Menzies, M.; Bondell, H. Understanding spatial propagation using metric geometry with application to the spread of COVID-19 in the United States. Europhys. Lett.
**2021**, 135, 48004. [Google Scholar] [CrossRef] - James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Carbon Dioxide Capture and Storage. 2005. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf (accessed on 26 November 2022).
- Kantorovich, L.V.; Rubinstein, G. On a space of completely additive functions. Vestn. Leningr. Univ.
**1958**, 13, 52–59. [Google Scholar]

**Figure 1.**Cumulative distribution functions ${F}_{S}$ for eight sectors S, (

**a**) refining (

**b**) ammonia (

**c**) synfuels (

**d**) methanol (

**e**) mobility (

**f**) domestic heat (

**g**) CHP (

**h**) power. Sectors are described in Section 2. The greatest collective similarity is observed between industrial applications, with an explosion of planned plants in the 2020’s. Power serves as an anomaly with its highly uniform trend of new plants.

**Figure 2.**Hierarchical clustering on cumulative distribution functions ${F}_{S}$ (relative to time) for all 14 end-use sectors S in our database. A strong cluster of similarity is observed for the seven industrial uses, ranging from biofuels to ammonia. A secondary cluster of more ‘consumer uses’ is revealed from grid injection to domestic heat, whereas power is observed as an outlier due to its highly uniform nature.

**Figure 3.**Distribution dendrograms between continental/technological groups G, produced by hierarchical clustering on the distance (2) for (

**a**) the entire period of analysis (

**b**) 2000—2009 (

**c**) 2010–2019 (

**d**) 2020–2029 (

**e**) 2030–2039. There are only 12 groups G as there are no fossil plants in Africa or Latin America.

**Figure 4.**Stacked bar plots showing distribution of end-use sectors for (

**a**) the entire period of analysis (

**b**) 2000–2009 (

**c**) 2010–2019 (

**d**) 2020–2029 (

**e**) 2030–2039. There are only 12 groups G as there are no fossil plants in Africa or Latin America. Empty bars indicate no plants in that group over that period.

**Figure 5.**Log capacity vs. year of construction for all plants in our dataset with available data. We classify plants by both their technology as well as their usage, using the clusters of end-use sectors from Section 3 Figure 2. We can see the early dominance of blue plants (with a few early exceptions) by several orders of magnitude, but this is closing with time.

**Table 1.**Adjusted ${R}^{2}$, a measure of goodness of fit for eight different linear regression models between (log) capacity, grouped or ungrouped sectors, and technology. A far better fit is observed for the exponential models.

Adjusted ${\mathit{R}}^{2}$ | No Separation by Tech | Stratified by Tech | ||
---|---|---|---|---|

Grouped Sectors | All Sectors | Grouped Sectors | All Sectors | |

Capacity | 0.0255 | 0.0204 | 0.0273 | 0.0226 |

Log capacity | 0.569 | 0.587 | 0.607 | 0.622 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

James, N.; Menzies, M.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants. *Hydrogen* **2023**, *4*, 174-189.
https://doi.org/10.3390/hydrogen4010012

**AMA Style**

James N, Menzies M.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants. *Hydrogen*. 2023; 4(1):174-189.
https://doi.org/10.3390/hydrogen4010012

**Chicago/Turabian Style**

James, Nick, and Max Menzies.
2023. "Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants" *Hydrogen* 4, no. 1: 174-189.
https://doi.org/10.3390/hydrogen4010012