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Abstract: Forest phytophysiognomies have specific spatial patterns that can be mapped or translated
into spectral patterns of vegetation. Regions of spectral similarity can be classified by reference to
color, tonality or intensity of brightness, reflectance, texture, size, shape, neighborhood influence, etc.
We evaluated the power of accuracy of supervised classification algorithms via per-pixel (maximum
likelihood) and geographic object-based image analysis (GEOBIA) for distinguishing spectral patterns
of the vegetation in the northern Brazilian Amazon. A total of 280 training samples (70%) and
120 validation samples (30%) of each of the 11 vegetation cover and land-use classes (N = 4400) were
classified based on differences in their visible (RGB), near-infrared (NIR), and medium infrared (SWIR
1 or MIR) Landsat 8 (OLI) bands. Classification by pixels achieved a greater accuracy (Kappa = 0.75%)
than GEOBIA (Kappa = 0.72%). GEOBIA, however, offers a greater plasticity and the possibility
of calibrating the spectral rules associated with vegetation indices and spatial parameters. We
conclude that both methods enabled precision spectral separations (0.45–1.65 µm), contributing to
the distinctions between forest phytophysiognomies and land uses—strategic factors in the planning
and management of natural resources in protected areas in the Amazon region.

Keywords: Amazon; GEOBIA; image classification; image segmentation; Landsat 8

1. Introduction

Digital image processing (DIP) faces a new paradigm in which conventional classifica-
tion by pixels, considered the smallest, central, and exclusive carrier element of geographic
information [1,2], is refined via either an object-based image analysis (OBIA) approach [3–8]
or geographic object-based image analysis (GEOBIA) [9–11]. New paradigms require new
methodological conceptions, considering that researchers [12,13] have already reported
problems with conventional approaches at the pixel level related to multiple scaling pro-
cesses, mixed pixels, spatial information degradation, and unstable effects in environmental
modeling, such as the “salt-and-pepper” effect [14]. With technological advances and the
availability of medium to high spatial resolution data, the degrees of detail and the quan-
tities of information generated have greatly increased, and there is a need to adjust the
regionalization of information by DIP, highlighting segmentation technique processes in hi-
erarchizations as vital to the classification and understanding of the dynamics of vegetation
cover and land-use changes [11,14].

Ecologies 2023, 4, 686–703. https://doi.org/10.3390/ecologies4040045 https://www.mdpi.com/journal/ecologies

https://doi.org/10.3390/ecologies4040045
https://doi.org/10.3390/ecologies4040045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ecologies
https://www.mdpi.com
https://orcid.org/0000-0002-5143-0938
https://orcid.org/0000-0002-0553-4824
https://doi.org/10.3390/ecologies4040045
https://www.mdpi.com/journal/ecologies
https://www.mdpi.com/article/10.3390/ecologies4040045?type=check_update&version=3


Ecologies 2023, 4 687

Environmental studies related to the detection of vegetation cover and land-use
changes in the Amazon region require the continuous evolution of DIP techniques in
remote-sensing software and geographic information systems, as well as computers with
greater processing capacities that could allow the rapid detection of deforestation and
forest degradation [15–18], and therefore facilitate environmental monitoring, inspections,
and the conservation and protection of the environmental services provided by Brazilian
Amazonian forests [19,20]. The GEOBIA approach considers the delimitation of homo-
geneous geographic objects as the basis for the later processing of the hierarchization of
upper and lower levels via different processing algorithms, and determining whether they
can be inherited or not [7,9,10]. In practice, satellite images are segmented as “pieces of a
puzzle” into geographic objects with similar characteristics of brightness, reflectance, color,
texture, area, shape, and neighborhood influences, etc., which are elaborated by a set of
rules that allow associations between the objects, vegetation indices, and spatial parameters
in the landscape, at different spatial scales, and in different hierarchies. Conventional
pixel procedures are purely statistical and based on differences in the behaviors of objects
and their spatial and spectral relationships [12,13]. In a per-pixel approach, supervised
classification makes use of samples of regions of interest (ROI) used for training and valida-
tion, which are usually performed via algorithms such as maximum likelihood, support
vector machine, etc., and obtain good results from a statistical point of view. Mixed pixels,
however, are considered sources of errors and are corrected by spectral unmixing [21–23].

The spectral behavior of an object can be defined using its reflectance values along
the electromagnetic spectrum—also called its spectral signature or spectral pattern [24,25].
Objects on the Earth’s surface reflect, absorb, and transmit electromagnetic radiation in
ratios that vary according to their biophysical–chemical characteristics [24–26], making it
possible to distinguish different regions of interest (ROI) by their spectral characteristic in
the landscape via remote sensing and DIP. The difference in the present spectral pattern
approach was that we compared different supervised classification methods of natural
ecosystems in the Brazilian Amazon under constant human pressure to expand land use.
The principal questions addressed in this study were: (i) Can the spectral patterns of
vegetation obtained from different color combinations of visible (RGB) and infrared (NIR
and SWIR 1 or MIR) bands of Landsat 8 images allow us to distinguish between forest
phytophysiognomies in the northern Brazilian Amazon? (ii) Can we measure the spectral
separability of vegetation cover classes? (iii) Which supervised classification method
(pixel-based—maximum likelihood; or geographic object-based image analysis—GEOBIA)
provides greater accuracy in this context?

2. Materials and Methods
2.1. Study Area and Data Collection

The study area (102,750 km2) is covered by a mosaic of reflectance images (path 232;
rows 059–060) of the Landsat 8 [OLI: Operational Land Imager], obtained from the USGS
website (http://earthexplorer.usgs.gov/). The daytime summer season images (04 Oc-
tober 2015 and 10 January 2017) have an incidence of cloud cover of less than 10%. The
Anauá National Forest is a protected area in the extreme northern Brazilian Amazon, in
Roraima State. It is a federal conservation area managed by the Chico Mendes Institute
of Biodiversity (ICMBio) and covers approximately 2600 km2 (Figure 1). It is part of the
white-sand ecosystems of the Brazilian Amazon, a region with a high degree of endemism,
although few botanical surveys have been conducted there [27–30]. It is marked by sea-
sonal hydrological influences [31], with different degrees of hydro-morphism [32], and is
exposed to increasing atmospheric carbon emissions caused by human actions associated
with deforestation for cattle ranching [33–35], forest degradation, illegal selective logging,
and forest fires [16–18,20]. The Anauá National Forest was created in 2005, although its
management plan was only approved in 2022 [36].

http://earthexplorer.usgs.gov/
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Figure 1. The study area (102,750 km2) is centered on the Anauá National Forest in Roraima State,
Brazil, covered by a mosaic of Landsat 8 (OLI) reflectance images (path 232, rows 059–060).

To more accurately represent reality in the field, we classified 2500 control samples
(CS) using a handheld GPS (Garmin Etrex, UTM Projection, Datum WGS84), recording their
spatial coordinates, and making photographic records of the in situ landscape, into 11 vege-
tation cover and land-use classes (C), following the classification system of the Brazilian
Institute of Geography and Statistics—IBGE [37] (Table 1). The CS were obtained through
joint operations of research, inspection, and environmental monitoring, with the participa-
tion of ICMBio, the State Foundation for the Environment and Water Resources (FEMARH),
the Independent Company of Environmental Policing of the Military Police (CIPA), the
State University of Roraima (UERR), and the Laboratory of Forest Management of the
National Institute of Amazonian Research (LMF/INPA). Approximately 1266 km were
navigated along the Branco, Anauá, Itapará, and Jaburu rivers, as well as several streams,
during the inventory of the Anauá National Forest, and in support of the National Action
Plan for the Conservation of the Amazonian Manatee (Trichechus inunguis) coordinated by
the Roraima ICMBio [38]. During the installation of 120 plots (0.25 ha each; 30 ha total) for
a forest inventory (IF) of trees with diameters at breast height (DBH) > 10 cm, 74 km were
covered by walking within the Anauá National Forest [18]. Additionally, 3000 km were
covered along roads surrounding the Anauá National Forest and neighboring areas in the
municipalities of Cantá, Caracaraí, Mucajaí, Iracema, and Rorainópolis, to detect changes
in vegetation cover and land use during the period between 2013 and 2017.
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Table 1. Classes of vegetation cover and land use in the Anauá National Forest, Roraima State, Brazil.

Class Vegetation Cover and Land Use Initials Description
Colors

ROI

C1 Dense Ombrophilous Forest Ds Dense forest cover, high textural roughness, no
soil exposure.

C2 Campinarana Florestada Ld Dense forest cover, medium textural roughness, no
soil exposure.

C3 Campinarana Arborizada La Environment with trees and shrubs, with slight
soil exposure.

C4 Campinarana Arbustiva Lb Environment with shrubs and average
soil exposure.

C5 Campinarana Gramíneo-Lenhosa Lg Environment with grasses and high soil exposure.

C6 Water and Igapó Wi Rivers, streams, and flooded environments

C7 Sand Sa Environment with sandy soils.

C8 Urban area Ua Anthropically altered areas with different degrees
of urbanization.

C9 Forest Degradation Fd Areas impacted by illegal selective logging.

C10 Pasture Pa Pasture areas in different states of conservation.

C11 Deforestation De Areas with forest cover removed, with
soil exposure.

Forest physiognomies (Ds, Ld, La, Lb, Lg) were classified according to the Brazilian Institute of Geography and
Statistics—IBGE [37]; ROI colors were assigned to differentiate regions of interest during training and validation.

2.2. Data Analysis and Digital Image Processing

Initially, digital image processing (DIP) was performed to convert digital numbers
(DN) to top of atmosphere reflectance (TOA) physical units, maintaining the 16-bit ra-
diometric resolution, as described in the Landsat 8 (L8) Data Users Handbook—Version
5.0 (2019). Subsequently, exploratory DIP analyses of the control samples (CS) and the
reflectance images were performed. To detect the spectral patterns of the forest phyto-
physiognomies in Anauá National Forest, 2500 CS were used as field references for the
later stage of DIP, with the selection of 4400 ROI samples of vegetation cover and land
use exhibiting spectral homogeneity and similar statistical parameters in relation to the
reflectance of the five bands analyzed (0.45–1.65 µm) [39]. The ROI were divided into
280 training samples (70%) and 120 validation samples (30%) in each class mapped, com-
posing 4400 mosaic ROI samples (102,750 Km2). We evaluated the statistics (mean, median,
range, standard deviation, variance, correlation matrix, and confidence interval—CI95%) of
the ROI reflectance values, analysis of variance (ANOVA), and pairwise comparison test
(Tukey) in R programming language using R Studio software—Version 2022.12.0 [40] via
the corrplot R package. In this way, three (3) color compositions were evaluated in visible
(RGB) and infrared (NIR and SWIR 1) bands, with contrast enhancement in the stretch
image histogram with standard deviations (n = 2.5) (Figure 2).

2.3. The Spectral Behavior of the Vegetation Indices and Fractional Coverage Image Index

We used two vegetation indices (NDVI and NDWI) [22,41,42], based on spectral
reflectance behavior, to indirectly describe the remote sensing of photosynthesis and the
presence of water in the internal structures of the plants. We used a fractional cover image
(FCI) index [16,17], derived from automatic processing by CLASlite Forest Monitoring
Technology Software—Version 3.2. The FCI represents the pixel subdivided into 3 fractions:
PV (the fractional cover of photosynthetic vegetation, 0–100%); NPV (the fractional cover of
non-photosynthetic vegetation, 0–100%); and BARE (the fractional cover of bare substrate,
0–100%).
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(SWIR 1 or MIR) wavelengths of Landsat 8 (OLI) images of the Anauá National Forest, where: (1) Visi-
ble {R(4)G(3)B(2)}: R [Red b4] = 0.64–0.67 µm; G [Green b3] = 0.53–0.59 µm; B [Blue b2] = 0.45–0.51 µm;
(2) Near infrared {R(5)G(4)B(3)}: R [NIR b5] = 0.85–0.88 µm; G [Red b4] = 0.45–0.51 µm; B [Green
b3] = 0.53–0.59 µm; (3) Mean infrared {R(6)G(5)B(4)}: R [SWIR 1 or MIR b6] = 1.57–1.65 µm;
G [NIR b5] = 0.85–0.88 µm; R [Red b4] = 0.45–0.51 µm.

2.4. Pixel-Based Supervised Classification

Supervised classification of digital images per pixel was performed via the maximum
likelihood algorithm using ENVI—Version 5.1 [CLASSIC] software, which assumes that the
statistics of each class in each band are normally distributed and calculates the probability
of a particular pixel belonging to a specific class [2,22]. This classification process was
performed in two stages: (1) Training, with training samples (70%); and (2) Validation,
with validation samples (30%), both considering ROI samples of the 11 vegetation cover
and land-use classes. We used a 10,000 scale factor to divide TOA reflectance values
(Landsat 8) and to graphically represent the spectral patterns on a scale from 0 to 1%.
Accuracy was also evaluated via a confusion matrix (or error matrix) in relation to the
3-color composition, quantifying the overall score and Kappa index [22,43] (Supplementary
Material: Figures S1–S4). We performed several simulations before choosing the final five
bands (0.45–1.65 µm). We tested the inclusion of the seven bands (b1 to b7) with different
combinations but obtained only a low precision (overall < 60%; Kappa < 0.56).

2.5. Supervised Classification of Geographic Object-Based Image Analysis (GEOBIA)

GEOBIA [9–11] was performed in 5 steps via Trimble eCognition Developer 9 soft-
ware (Figure 3). A set of rules defined in a hierarchical process tree was used, gathering
information about the textural characteristics of the images, as described by Haralick [44],
spatial statistics (mean and standard deviation) of the variation in reflectance values of the
visible (RGB) and infrared (NIR and MIR) bands, vegetation index thresholds (NDVI and
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NDWI), and the edge effects of pixels in the neighborhood. Those rules were defined to
increase accuracy while separating the spectral patterns of the different classes.

(1) Primary segmentation
Multiresolution Segmentation

Weights: 

Blue = 1, Green = 1, Red = 1, NIR = 

2; SWIR = 1 ou MIR = 1

Scale:  40 

Shape: 0.1

Compactness: 0.6

 

(2) Secondary segmentation
Spectral Difference Segmentation

Weights: 

Blue = 1, Green = 1, Red = 1, NIR = 

2; SWIR = 1 ou MIR = 1

Maximum Spectral Difference: 50

 

(3) Rules set in the hierarchical process tree:

 

C6 {NIR < 1470}

No Water and Igapó {NIR > 1470}

          

No vegetation

{NDVI < 0.48}     

Vegetation

{NDVI > 0.48}     

C7 {NIR > 1470}

C8 {2600 < SWIR 1 <  

3700}

C1 {NDVI > 0.83 and 

GLMC Contrast all 

dir. > 1000}

C2 {NDVI > 0.83 and 

GLMC Contrast all 

dir. < 1000}

C3 {NDVI < 0.83 and 

NIR > 2300}

C4 {NDVI < 0.72 and 

NIR > 2050}

C5 {NDVI < 0.65 and 

NIR < 2050}

C9 {Standard 

desviation in RED > 

30 and Border to C1 > 

25 pixels}

C10 {NIR > 3000 and 

SWIR 1 or MIR > 

2200}

C11 {Mean of 

difference  to 

neighbors in RED (30) 

> 300 and Border to 

C1 > 15 pixels}

(4) Validation process in 

GEOBIA classification
Selection of ROI’s samples by 

overlapping geographic objects with 

ROI’s samples per pixel in each 

class. Example: C1. 

(5) Accuracy Assessment
Error matrix, Overall, Kappa and 

95% CI per mapped area. 

Figure 3. Supervised classification of Geographic Object-Based Image Analysis (GEOBIA) in 5 steps.
Using reflectance values without a conversion factor (10,000).

3. Results
3.1. Vegetation Spectral Patterns

The spectral patterns of the 11 vegetation cover and land-use classes related to visible
and infrared reflectance (NIR and SWIR 1 or MIR) were generated from 4400 ROI samples
per pixel of the landscape mosaic (102,750 km2) covering the Anauá National Forest, in
Roraima State, Brazil (Table 2).

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands.

Class Vegetation Cover and Land Use Spectral Patterns

C1
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Table 2. Cont.

Class Vegetation Cover and Land Use Spectral Patterns

C2

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

Campinarana Florestada (Ld)

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

C3

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

Campinarana Arborizada (La)

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

C4

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

Campinarana Arbustiva (Lb)

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

C5

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

Campinarana Gramíneo-Lenhosa (Lg)

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

C6

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 
Water and Igapó (Wi)

Ecologies 2023, 4, FOR PEER REVIEW 8 
 

 

Table 2. Spectral patterns of 11 vegetation cover and land-use classes from ROI samples per pixel 
(N = 4400) in terms of their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Class Vegetation Cover and Land Use Spectral Patterns 

C1 

 
Dense Ombrophilous Forest (Ds) 

 

C2 

 
Campinarana Florestada (Ld) 

 

C3 

 
Campinarana Arborizada (La) 

 

C4 

 
Campinarana Arbustiva (Lb) 

 

C5 

 
Campinarana Gramíneo-Lenhosa (Lg)  

C6 

 
Water and Igapó (Wi) 

 

C7

Ecologies 2023, 4, FOR PEER REVIEW 9 
 

 

C7 

 
Sand (Sa) 

 

C8 

 
Urban area (Ua) 

 

C9 

 
Forest Degradation (Fd) 

 

C10 

 
Pasture (Pa) 

 

C11 

 
Deforestation (De) 

 

The spectral patterns of the 11 classes were considered statistically distinct in terms 
of their visible (RGB), near-infrared (NIR), and medium (SWIR 1 or MIR) bands (Table 3).  

Table 3. Overall descriptive statistics of the reflectance values of ROI samples per pixel in terms of 
their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Parameters/Bands Blue Green Red NIR SWIR 1 or MIR 
Landsat 8 (OLI) b2 b3 b4 b5 b6 

ROI samples 4400 4400 4400 4400 4400 
Minimum 0.01 0.01 0.01 0.00 0.00 
Maximum 0.41 0.50 0.57 0.65 0.86 

Median 0.03 0.05 0.04 0.27 0.17 

Sand (Sa)

Ecologies 2023, 4, FOR PEER REVIEW 9 
 

 

C7 

 
Sand (Sa) 

 

C8 

 
Urban area (Ua) 

 

C9 

 
Forest Degradation (Fd) 

 

C10 

 
Pasture (Pa) 

 

C11 

 
Deforestation (De) 

 

The spectral patterns of the 11 classes were considered statistically distinct in terms 
of their visible (RGB), near-infrared (NIR), and medium (SWIR 1 or MIR) bands (Table 3).  

Table 3. Overall descriptive statistics of the reflectance values of ROI samples per pixel in terms of 
their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Parameters/Bands Blue Green Red NIR SWIR 1 or MIR 
Landsat 8 (OLI) b2 b3 b4 b5 b6 

ROI samples 4400 4400 4400 4400 4400 
Minimum 0.01 0.01 0.01 0.00 0.00 
Maximum 0.41 0.50 0.57 0.65 0.86 

Median 0.03 0.05 0.04 0.27 0.17 

C8

Ecologies 2023, 4, FOR PEER REVIEW 9 
 

 

C7 

 
Sand (Sa) 

 

C8 

 
Urban area (Ua) 

 

C9 

 
Forest Degradation (Fd) 

 

C10 

 
Pasture (Pa) 

 

C11 

 
Deforestation (De) 

 

The spectral patterns of the 11 classes were considered statistically distinct in terms 
of their visible (RGB), near-infrared (NIR), and medium (SWIR 1 or MIR) bands (Table 3).  

Table 3. Overall descriptive statistics of the reflectance values of ROI samples per pixel in terms of 
their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Parameters/Bands Blue Green Red NIR SWIR 1 or MIR 
Landsat 8 (OLI) b2 b3 b4 b5 b6 

ROI samples 4400 4400 4400 4400 4400 
Minimum 0.01 0.01 0.01 0.00 0.00 
Maximum 0.41 0.50 0.57 0.65 0.86 

Median 0.03 0.05 0.04 0.27 0.17 

Urban area (Ua)

Ecologies 2023, 4, FOR PEER REVIEW 9 
 

 

C7 

 
Sand (Sa) 

 

C8 

 
Urban area (Ua) 

 

C9 

 
Forest Degradation (Fd) 

 

C10 

 
Pasture (Pa) 

 

C11 

 
Deforestation (De) 

 

The spectral patterns of the 11 classes were considered statistically distinct in terms 
of their visible (RGB), near-infrared (NIR), and medium (SWIR 1 or MIR) bands (Table 3).  

Table 3. Overall descriptive statistics of the reflectance values of ROI samples per pixel in terms of 
their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands. 

Parameters/Bands Blue Green Red NIR SWIR 1 or MIR 
Landsat 8 (OLI) b2 b3 b4 b5 b6 

ROI samples 4400 4400 4400 4400 4400 
Minimum 0.01 0.01 0.01 0.00 0.00 
Maximum 0.41 0.50 0.57 0.65 0.86 

Median 0.03 0.05 0.04 0.27 0.17 



Ecologies 2023, 4 693

Table 2. Cont.

Class Vegetation Cover and Land Use Spectral Patterns
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The spectral patterns of the 11 classes were considered statistically distinct in terms of
their visible (RGB), near-infrared (NIR), and medium (SWIR 1 or MIR) bands (Table 3).

Table 3. Overall descriptive statistics of the reflectance values of ROI samples per pixel in terms of
their visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands.

Parameters/Bands Blue Green Red NIR SWIR 1 or MIR

Landsat 8 (OLI) b2 b3 b4 b5 b6

ROI samples 4400 4400 4400 4400 4400

Minimum 0.01 0.01 0.01 0.00 0.00

Maximum 0.41 0.50 0.57 0.65 0.86

Median 0.03 0.05 0.04 0.27 0.17

Average 0.04 0.06 0.06 0.26 0.19

IC95% Lower 0.04 0.06 0.06 0.26 0.19

IC95% Upper 0.04 0.06 0.07 0.26 0.20

Standard deviation 0.03 0.05 0.06 0.09 0.12

Variance 0.001 0.002 0.004 0.008 0.013

ANOVA 1122.9 1396.2 1547.0 1394.1 1327.0

p-value 0.000 0.000 0.000 0.000 0.000

Tukey’s test for the comparison of means by pairs showed the formation of spectral
groups with reflectance homogeneity in their electromagnetic spectrum bands (0.45–1.65 µm),
with NIR presenting different spectral patterns in all classes (Table 4).
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Table 4. Spectral group separation (SG) of the reflectance of ROI samples per pixel in their visible
(RGB) and infrared (NIR and SWIR 1 or MIR) bands per vegetation cover and land-use class.

Blue (0.45–0.51 µm) Green (0.53–0.59 µm) Red (0.64–0.67 µm) NIR (0.85–0.88 µm) SWIR 1/MIR
(1.57–1.65 µm)

SG Class Mean p SG Class Mean p SG Class Mean p SG Class Mean p SG Class Mean p

1

C6 0.017

1.0

1 C6 0.025 1.0

1

C6 0.022

1.0

1 C6 0.076 1.0 1 C6 0.036 1.0

C1 0.017

2

C1 0.037

1.0

C1 0.022 2 C5 0.170 1.0

2

C1 0.134

1.0C2 0.018 C2 0.040 C2 0.024 3 C4 0.212 1.0 C2 0.139

2 C9 0.021 1.0 C9 0.040
2

C9 0.031
1.0

4 C11 0.223 1.0 C3 0.140

3 C3 0.024 1.0

3

C3 0.045

1.0

C3 0.034 5 C3 0.259 1.0 3 C9 0.154 1.0

4
C4 0.031

1.0
C5 0.047

3
C4 0.047

1.0
6 C9 0.286 1.0 4 C5 0.169 1.0

C5 0.033 C4 0.049 C5 0.051 7 C8 0.294 1.0 5 C4 0.179 1.0

5
C10 0.035

1.0
4 C11 0.056 1.0

4
C11 0.064

1.0
8 C1 0.310 1.0 6 C10 0.222 1.0

C11 0.036 5 C10 0.073 1.0 C10 0.067 9 C2 0.318 1.0 7 C11 0.234 1.0

6 C8 0.070 1.0 6 C8 0.104 1.0 5 C8 0.116 1.0 10 C10 0.337 1.0 8 C8 0.286 1.0

7 C7 0.117 1.0 7 C7 0.177 1.0 6 C7 0.224 1.0 11 C7 0.367 1.0 9 C7 0.446 1.0

MSE 0.0003 MSE 0.0005 MSE 0.0009 MSE 0.0020 MSE 0.0034

Where: SG = spectral group; p = p-value; MSE = mean squared error; Tukey’s test with pairwise means (α = 0.05).

The spectral correlations of the reflectance values of the ROI samples per pixel in the
visible (RGB) and infrared (NIR and SWIR 1 or MIR) bands were addressed for the total
variation (N = 4400) and per class (n = 400) (Figure 4).
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3.2. The Spectral and Spatial Behaviors of the Vegetation Indices and Fractional Coverage Images

The vegetation evidenced spectral reflectance behaviors with high indirect activities
(remote sensing) of photosynthesis (NDVI, PV) and the presence of water in the internal
structures of the plants (NDWI) in decreasing order in forest vegetation: Class 1, Class 2,
Class 3, Class 4, and Class 5 (Table 5). The spectral and spatial behaviors of the vegetation
index, water index, and fraction cover image within the Anauá National Forest can be
visualized in Figure 5.

Table 5. Descriptive statistics of the spectral reflectance behaviors of NDVI, NDWI, and FCI in
relation to the 11 vegetation cover and land-use classes of ROI samples per pixel (N = 4400).

Class NDVI NDWI
Fractional Coverage Image (FCI)

BARE (%) PV (%) NPV (%)

C1 0.86 ± 0.01 0.40 ± 0.02 0.97 ± 2.31 93.93 ± 2.06 8.64 ± 3.75

C2 0.86 ± 0.02 0.39 ± 0.02 2.09 ± 3.39 92.28 ± 2.85 8.14 ± 4.03

C3 0.77 ± 0.03 0.30 ± 0.06 0.25 ± 1.26 85.37 ± 6.62 19.33 ± 6.22

C4 0.64 ± 0.06 0.09 ± 0.09 0.04 ± 0.54 65.17 ± 13.00 46.74 ± 15.07

C5 0.53 ± 0.08 0.03 ± 0.16 0.06 ± 0.58 61.42 ± 23.44 43.10 ± 22.75

C6 0.43 ± 0.31 0.36 ± 0.11 0.12 ± 0.67 22.80 ± 40.12 2.87 ± 5.82

C7 0.25 ± 0.11 −0.08 ± 0.11 15.43 ± 23.07 13.41 ± 23.70 29.68 ± 34.16

C8 0.45 ± 0.16 0.03 ± 0.12 16.07 ± 18.64 35.47 ± 23.73 48.22 ± 21.91

C9 0.81 ± 0.06 0.30 ± 0.09 0.84 ± 2.20 85.25 ± 9.95 19.17 ± 11.07

C10 0.67 ± 0.06 0.20 ± 0.10 11.00 ± 10.15 64.97 ± 11.71 24.95 ± 15.99

C11 0.55 ± 0.13 −0.0267 ± 0.12 1.01 ± 3.46 50.64 ± 16.53 54.93 ± 20.81
Where values refer to the mean and standard deviation.
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Figure 5. Spectral and Spatial reflectance behaviors of vegetation (NDVI), water (NDWI), and
fractional cover image (PV, NPV, and BARE) indices of the Anauá National Forest in Roraima, Brazil.
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3.3. Accuracy Assessment

Pixel-supervised classifications via the maximum likelihood algorithm demonstrated
substantial accuracy in the 3 color compositions: visible [R(4)G(3)B(2), overall = 74.9%,
Kappa = 0.72]; near infrared—NIR [R(5)G(4)B(3), overall = 76.9%, Kappa = 0.75]; and
medium infrared—SWIR 1 or MIR [R(6)G(5)B(4), overall = 72.9%, Kappa = 0.70], see
Supplementary Material. GEOBIA also demonstrated substantial accuracy [overall = 74.2%;
Kappa = 0.72] for gathering spectral information from 5 bands of visible (RGB) and infrared
(NIR and SWIR 1 or MIR) wavelengths, together with two vegetation indices (NDVI and
NDWI), associated with a set of rules (descriptors) by class (Figure 3). The area of the
Anauá National Forest in Roraima was delimited in the following classes by supervised
pixel and GEOBIA classifications (Table 6).

Table 6. Delimitations of the estimated areas of the 11 vegetation cover and land-use classes of the
supervised classifications by per-pixel and GEOBIA.

Class

Maximum Likelihood (Per-Pixel) GEOBIA

R(4)G(3)B(2)
(%)

R(5)G(4)B(3)
(%)

R(6)G(5)B(4)
(%)

Anauá National
Forest (%)

Mosaic

(Km2) (Km2) (Km2) (Km2) (Km2)

C1 755 29 712 27 980 27 992 38 26,508

C2 1132 44 1169 45 898 45 807 31 16,560

C3 170 7 207 8 214 8 274 11 9096

C4 257 10 313 12 285 12 231 9 4395

C5 141 5 109 4 88 4 201 8 3451

C6 6 0 9 0 14 0 11 0 37,328

C7 2 0 2 0 3 0 26 1 1283

C8 10 0 5 0 3 0 8 0 501

C9 76 3 22 1 33 1 34 1 2439

C10 1 0 3 0 3 0 0 0 614

C11 45 2 45 2 75 2 0 0 30

Total 2596 100 2596 100 2596 100 2584 100 102,204

4. Discussion

The spectral behavior of radiation reflected, transmitted, or absorbed by vegetation
has been investigated in attempts to understand the responses of natural systems to stress
situations, forest degradation, disease, drought, fire, seasonality, floods, successional stages,
etc., [8,17,25,26,45,46]. The spectroscopic canopy fingerprints of each species are strongly
influenced by foliar chemical attributes (trace elements), specific leaf area (SLA), water
content, lignin, cellulose, carbon, and the enzymatic activity of chlorophylls and carotene
pigments and can generally be described by hyperspectral sensors and LIDAR (light
detection and ranging) [46–51]. In this study, we observed that the spectral behavior of
reflectance in the near-infrared (NIR) band (0.85–0.88 µm), obtained by the Landsat 8 sensors
(OLI), revealed differential patterns, with the formation of spectral groups corresponding to
11 vegetation cover and land-use classes, making it possible to distinguish between forest
phytophysiognomies in the northern Brazilian Amazon, particularly in the Anauá National
Forest in Roraima State.

Reflectance analysis of three color compositions was used to visually explore the
color and tone nuances of the electromagnetic spectrum between the visible (RGB) and
infrared (NIR and SWIR 1 or MIR) bands characteristic of each vegetation cover and land-
use class. The R(4)G(3)B(2) composition of the visible bands allows the visualization of
the digital image in much the same way as we actually see it in nature, allowing a rapid
distinction between natural, intact landscape elements (land cover including water = C1
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to C7) and those altered by humans (land use = C8 to C11), with lower reflectance values
for vegetation and water (C1 to C6) and higher values for land-use areas (C7 to C11) [2,22].
The R(5)G(4)B(3) composition of the near-infrared band (NIR) shows nuances in varied
shades of red, referring to variations in texture (smooth to rough), with lighter tones being
related to increased soil exposure, the chaotic mirroring behavior of the sand fraction,
and high water absorption, thus demonstrating the great potential of NIR to distinguish
between vegetation cover and land-use classes [22,24–26]. The R(6)G(5)B(4) composition
of the medium infrared range (SWIR 1 or MIR) shows nuances between dry and flooded
environments, with the vegetation absorbing more radiation in this range when it has
higher water contents in leaf structures [22]. In natural environments, without stress (C1 to
C5), medium infrared (SWIR 1 or MIR) absorption is greater than that observed in altered
environments such as degraded forests (C9), pastures (C10), and deforested sites (C11).
The spectral behaviors of the vegetation (NDVI) and water (NDWI) indices reflect these
nuances among visible (red) and near and medium infrared (NIR and SWIR 1 or MIR)
wavelengths, where the sources of variation between classes are related to differences in
plant height and density and different degrees of soil exposure.

The maps of spectral reflectance patterns characteristic of vegetation cover and land-
use classes can be termed spectral signatures and are of vital importance in supervised
classifications by pixels or GEOBIA. Although the maximum likelihood algorithm per
pixel is considered robust and rapidly processed, we have already reported problems
associated with this purely statistical method [11–13]. In the present study, we detected
errors associated with the Sand (C7), Campinara Gramíneo-Lenhosa (C5), and Urban Area
(C8) classes. The GEOBIA approach presents numerous manners to create classification
rules to reduce confusion among geographic objects in the landscape and obtain more
satisfactory and realistic results [9–11]. The segmentation calibration process in GEOBIA
is considered essential to obtaining satisfactory results, with subsequent segmentations
designed to group geographic objects with specific levels of spectral similarity. We ob-
served that the calibration of shape parameters (0.8) and compaction (0.7) resulted in
geographic objects with well-delimited and less compact edges, although internal details
related to color and tonality aspects, and considered essential for distinguishing among
forest physiognomies (C1 to C5), were lost. Therefore, by reducing the shape (0.1) and
compression (0.5) values, we can highlight the color and tonality of the geographic objects,
giving greater weight to the near-infrared band (NIR), which is responsible for the largest
variations among classes. The work in [9–11] reported that when assigning attributes to
geographic objects, the spectral properties of the individual cells or pixels are calculated
for the whole object, reducing the confusion of the classification as an average, and thus
reducing variance (within the object). The association of NIR reflectance values with NDVI
and NDWI in each set of rules per class can also be considered a spectral signature within
the GEOBIA approach. Although a supervised classification per pixel achieved greater
accuracy than GEOBIA in separating the spectral patterns of the 11 classes mapped in this
study, we emphasize that the GEOBIA approach could be improved with further studies,
especially in the context of tropical forests using NIR. The GEOBIA approach allows wide
possibilities for calibration and the definition of a variable set of spectral rules associated
with vegetation indices, spatial parameters, and associated statistics. Figure 6 presents the
results of the pixel-supervised classification (in different compositions) and the GEOBIA
classification of the spatial patterns of the forest phytophysiognomies mapped within the
Anauá National Forest in Roraima, Brazil.
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Figure 6. Pixel supervised classification in 3 color compositions (maximum likelihood) versus
GEOBIA of the vegetation cover and land-use classes in the Anauá National Forest, Roraima State,
Brazil, where area % expresses the percentage area per class as classified by GEOBIA.

The Anauá National Forest has great potential for sustainable forest management,
considering that forest cover occupies the largest portion of land within this federal conser-
vation area, even without considering permanent preservation areas (APP), which are legal
instruments defining areas that must be preserved in riparian forests, bodies of water, etc.,
(Law 12.651 of 2012 of the New Forest Code of Brazil). However, the delay in preparing a
management plan for the National Forest [36] made it impossible to carry out sustainable
forest management activities for many years, leaving it vulnerable to deforestation, illegal
selective logging, and forest fires [18]. It therefore failed to contribute to the socioeconomic
development of southern Roraima, in the Brazilian Amazon.

GEOBIA estimated forest degradation by illegal selective logging within the Anauá
National Forest to be 34 km2 in the period between 2015 and 2017. Using the per-pixel
method, this area varied between 22 and 76 km2, considering different spectral band
compositions (Table 6). The work in [44] developed 14 metrics to evaluate the textural
features of satellite images based on co-occurrence matrix operations that statistically
expressed spatial variations of gray tones and visually differentiated regions with smooth
to rough textures. The Haralick texture contrast (GLMC Contrast all dir.) associated
with a set of rules to understand the variation in the spatial distributions of gray tones
[referring to reflectance values of visible (RGB) and infrared (NIR and SWIR 1 or MIR)
bands] was used with substantial accuracy. The rule (Figure 3) that associates Descriptor 1
{NIR classified by reflectance (%) at the threshold of 0.2 (blue) to 0.4 (green)} with Descriptor
2 {Haralick texture contrast (GLCM Contrast all dir.)} allows the spectral separation of
Dense Ombrophilous Forest (C1) from Campinarana Florestada (C2) and is considered a
spectral signature within the GEOBIA approach (Figure 7).
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m) satellite images and is usually associated with more compact, man-made outlines re-
lated to pasture formation, cattle ranching, and agricultural crops after forest clearing and 

Figure 7. Spectral and spatial patterns of vegetation cover and land-use classes in the Anauá National
Forest, in which: (1) Descriptor 1 {NIR classified by reflectance (%) at the threshold of 0.2 (blue) to
0.4 (green)}; (2) green vegetation in the visible range (RGB); (3) Descriptor 2 {Haralick texture contrast
(GLCM Contrast all dir.)} showing light tones in areas of high contrast (rough texture) and dark tones
in areas of lower contrast (smooth texture); (4) red vegetation in the near-infrared range—NIR; and,
(5) fractional cover imaging, evidencing the high percentages of exposed soil (Bare in pink) resulting
from deforestation (black square), and high concentrations of dead vegetation (NPV in blue), and
forest degradation (red rectangle) resulting from selective timber extraction.

Deforestation (C11, black square) and forest degradation (C9, red rectangle) are land-
use classes with different spatial patterns (Figure 7). Deforestation is easily detected by
medium (e.g., Landsat 8, 30 m) and high spatial resolution (e.g., QuickBird, 0.6 cm to
2.8 m) satellite images and is usually associated with more compact, man-made outlines
related to pasture formation, cattle ranching, and agricultural crops after forest clearing and
burning [33,34]. Forest degradation has been almost invisible to most satellite coverage [16]
because it represents man-made attempts to hide illegal extraction by maintaining the
canopy cover which cannot be identified by medium to low resolution satellite coverage
(Landsat sensors: 15–120 m to NOAA: 1.1 Km) [14,15]. In this way, both land uses cause
reductions in native forest tree species diversity and contribute to the loss of environmental
services in the Amazon [19,35,52,53].

Both land-use classes in southern Roraima, near the Anauá National Forest, are
strongly related to the formation of pasturelands through deforestation and illegal selective
logging [17]. These actions can be captured by changes in the proportions of the PV, NPV,
and Bare fractions in coverage images, and changes in spectral values (bands: blue, green,
red, NIR, and SWIR or MIR), with reductions of NDVI and NDWI values that reflect
reductions of photosynthetic capacity and water accumulation by the vegetation. We
can therefore observe how changes in land use and land cover determine reductions of
biomass and forest carbon stocks—resulting in significant changes in the spectral behavior
of vegetation cover reflectance in the Amazon (Figure 8). We emphasize that the spectral
patterns of vegetation cover may also change over the years due to the occurrence of both
natural environmental factors (drought, mortality, fire, storms, etc.) and anthropogenic
factors (mainly those related to land-use expansion) [45–51].
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Figure 8. Changes in land use and land cover provoke reductions of biomass and carbon stocks,
with changes in the spectral behavior of vegetation reflectance in the Amazon. Images from Landsat
8 (OLI).

Many conservation areas in Brazil were created to contain the advance of illegal and
predatory extraction of natural resources from natural lands and jurisdictional waters and
to promote the maintenance of biological diversity and protect genetic resources (ICMBio
Law 9985). The Anauá National Forest is a sustainable use area whose basic objective is
to guarantee the multiple sustainable uses of forest resources in association with scientific
research. The maps created here (Figures 5–7) were donated to ICMBio [36], the managing
body of the Anauá National Forest, to subsidize technical-scientific discussions of the
delimitation, management, and monitoring of the permanent preservation areas, guarantee
the maintenance of the vital processes of the fauna and flora, and protect legal reserves
for the sustainable and rational extraction of forest resources. We believe that sustainable
forest management is the best way to preserve forest integrity, the economic viability of
forest activities, the conservation of the environmental services provided by the Amazon
Forest, and to help maintain Earth’s climatic balance.

5. Conclusions

The mapping of vegetation cover and land use via Landsat 8 (OLI) sensors in the
visible and infrared bands (0.45–1.65 µm) enabled the separation and distinction of spectral
patterns of different forest phytophysiognomies—a strategic achievement for the manage-
ment of natural resources within conservation areas in the Amazon region.

We conclude that both supervised classification methods (pixel-based—maximum
likelihood; and geographic object-based image analysis—GEOBIA) were accurate for distin-
guishing the spectral patterns of the different phytophysiognomies in the Anauá National
Forest in Roraima State, Brazil. We emphasize, however, that the GEOBIA approach
requires further study, considering that it allows wide possibilities for the calibration
and definition of variable sets of spectral rules associated with vegetation indices, spatial
parameters, and associated statistics.

The Anauá National Forest has great potential for sustainable forest management,
considering its large area, with the predominance of Dense Ombrophilous Forests (C1)
and Campinarana Florestada (C2). A lack of effective management, however, puts its flora
and environmental services at risk due to increasing carbon emissions to the atmosphere
from human activities associated with deforestation for expansion of cattle ranching, forest
degradation through illegal selective logging, and forest fires.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ecologies4040045/s1, Figure S1: Confusion matrix (or error matrix)
for the maximum likelihood classification (per-pixel). Where: Color composition R(4)G(3)B(2); mosaic
of reflectance images (path 232; rows 059-060); Landsat 8 sensor (OLI). Figure S2: Confusion matrix
(or error matrix) for the maximum likelihood classification (per-pixel). Where: Color composition
R(5)G(4)B(3); mosaic of reflectance images (path 232; rows 059-060); Landsat 8 sensor (OLI). Figure S3:
Confusion matrix (or error matrix) for the maximum likelihood classification (per-pixel). Where:
Color composition R(6)G(5)B(4); mosaic of reflectance images (path 232; rows 059-060); Landsat 8
sensor (OLI). Figure S4: Confusion matrix (or error matrix) for the GEOBIA. Where: using visible
bands (RGB), near and medium infrared bands (NIR, SWIR 1 or MIR), NDVI and NDWI; mosaic of
reflectance images (path 232; rows 059-060); Landsat 8 sensor (OLI).
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