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Abstract: Hot springs are known as highly adverse extreme environments where thermophilic and
hyperthermophilic microorganisms can survive. We describe taxonomic diversity of several microbial
biofilms collected along water temperature gradient in hot streams in the aquatic system of the
Stolbovskie hot springs on Kunashir Island, Kurils, Russia. The taxonomic composition of the studied
microbial communities was assessed by the 16S rRNA gene metabarcoding for bacteria and archaea,
and by the 18S rRNA gene metabarcoding for protists. Richness and diversity of bacteria in the
geothermal microbial communities decreased with the increase of temperature, while for archaea,
the tendency was the opposite. Ciliophora was the most represented taxon of protists. The biofilms
of various kinds that we found in a very local area of the geothermal system were different from
each other by taxonomic composition, and the level of their taxonomic diversity was significantly
influenced by water temperature.

Keywords: Kurils; hot springs; microbial communities; metabarcoding; 16S rRNA; 18S rRNA;
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1. Introduction

Kunashir Island is the southernmost island in the Greater Kuril Chain, which is a part
of the Pacific Ring of Fire. It is an area of high tectonic activity around the rim of the Pacific
Ocean, where volcanic eruptions and earthquakes frequently occur. There are four active
volcanoes, Tyatya, Rurui, Golovnin, and Mendeleev [1], several acidic lakes, and numerous
hydrothermal systems [2] on the island. There are two types of geothermal springs. The
first type is represented by neutral or alkaline thermal waters, for example the Stolbovskie
hot springs, the second is represented by sulfurous waters with acidic or semi-neutral pH,
characteristic for numerous springs and rills in the Golovnin volcano area [3]. Extremophilic
microorganisms can survive also in such adverse conditions, making Kunashir a hot spot
of their diversity. Thermal biotopes with extreme conditions can serve as a source of novel
temperature-resistant microbial species, and of heat-stable enzymes with a biotechnologi-
cal potential. Thermophiles are a natural resource of extracellular polymeric substances
that form biofilms and are promising for applications in pharmaceutical, food and other
industries [4–6]. While earlier studies mainly focused on the thermophilic cyanobacteria
and some other microorganisms [7–9] were mostly describing their morphological diversity
in geothermal environments, a comprehensive analysis of the microbial diversity in such
biotopes became possible when culture-independent approaches such as metagenomics,
and 16S rRNA gene and 18S rRNA gene metabarcoding came into use [10–12]. Thanks to
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modern sequencing methods, it became possible to study the genomes and metabolism of
uncultured forms of bacteria and archaea. Bioinformatic analysis of high-quality genomes
of thermophilic microorganisms, including those assembled from metagenomes and single-
amplified genomes make a huge contribution to understanding the origin and evolution
of life, changes in the biogeochemistry of our planet and microbial ecology [13,14]. It is
worth mentioning that while prokaryotic communities of the geothermal springs were
a subject of numerous studies, the diversity of protists present in these extreme niches
remains much less known [15]. In general, thermophilic protists are rather rare, and no
hyperthermophiles were found among them [16].

Microbial communities of the Kunashir hot springs are poorly known; there were only
a few studies of the methanotrophic [17], thermal and acidophilic [18,19] communities on
the island. The purpose of the present work was to discover the taxonomic composition
and diversity of the spectacular biofilms (Figure 1) that we found in the aquatic system of
the Stolbovskie hot springs on Kunashir Island.
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Figure 1. Scheme of the sampling site at the Stolbovskie hot springs, and photographs of the studied 
biofilms. Blue polygons—hot springs; red asterisks—sampling points; blue arrows show direction 
of water flow. The distances between sampling sites: from site 1 to site 5 5.0 m; from site 2 to site 5 
4.5 m; from site 3 to site 5 3.5 m; from site 4 to site 5 4.0 m; from site 3 to site 6 15 m. 
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The sampling was performed at the Stolbovskie hot springs, Kunashir Island in Sep-
tember 2021 (Table 1). The Stolbovskie hot springs were categorized as Na-Cl type springs 
with semi-neutral pH (6.09–6.9) originating from the Mendeleev volcano top area [2,20]. 
The springs give origin to the hot streams and rills that fell into the big Zmeiny stream 
running to the Sea of Okhotsk. The characteristics of the chemical composition of water 
and dissolved gases for the hot spring at sampling site 1 were extracted from [20] and are 
provided in Supplementary Table S1. Unfortunately, there was no possibility to perform 
a detailed chemical analysis of water from the sampling sites, thus we could not take into 
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biofilms. Blue polygons—hot springs; red asterisks—sampling points; blue arrows show direction of
water flow. The distances between sampling sites: from site 1 to site 5 5.0 m; from site 2 to site 5 4.5 m;
from site 3 to site 5 3.5 m; from site 4 to site 5 4.0 m; from site 3 to site 6 15 m.

2. Materials and Methods
2.1. Description of the Sample Collection Sites

The sampling was performed at the Stolbovskie hot springs, Kunashir Island in
September 2021 (Table 1). The Stolbovskie hot springs were categorized as Na-Cl type
springs with semi-neutral pH (6.09–6.9) originating from the Mendeleev volcano top
area [2,20]. The springs give origin to the hot streams and rills that fell into the big Zmeiny
stream running to the Sea of Okhotsk. The characteristics of the chemical composition of
water and dissolved gases for the hot spring at sampling site 1 were extracted from [20]
and are provided in Supplementary Table S1. Unfortunately, there was no possibility to
perform a detailed chemical analysis of water from the sampling sites, thus we could not
take into account any possible changes of water chemistry that may occur along the hot
streams. The temperature at the sampling sites ranged between 17 ◦C and 81.5 ◦C, and the
circumneutral pH-values of water were in agreement with the data reported earlier [2,20].
The scheme of the sampling sites and the photographs of the studied biofilms are shown
on Figure 1.

Table 1. The characteristic of the sampling sites and description of the biofilms’ morphology. The
water temperatures are presented in a range.

Sample Name Latitude, North Longitude, East Temperature, ◦C Location Morphology

StB1 44.007009 145.683265 79.5–81.5 15–30 cm away from
the hot spring 1

White biofilm with thick
filamentous structure

StB2 44.006997 145.683311 50.0–58.5 Pool of the hot
spring 2

Layered structure of dark
green, brown and orange

brick color

StB3 44.007046 145.683308 18.0/46.0 Main stream
(thermocline zone)

Thin brownish
filamentous structure

StB4 44.007092 145.683204 67.0–69.0 4 m downstream
StB5

Layered structure, similar
to StB2 biofilm

StB5 44.007025 145.683300 69.0–70.2 Mixing point of two
hot springs

Layered structure, almost
transparent and

resembled a rigid and
dense jelly

StB6 44.007186 145.683210 17.0 Main stream bed
Amorphous,

brown-black, and
covered with gas bubbles

The main stream of the Stolbovskie hot springs system has rapid current and is
characterized by chilly water. Two hot springs with different water temperatures were
situated 8–10 m aside from the main stream and at 10 m from each other (Figure 1). Both
springs supplied with water two small rills that entered the main stream in different points.
Spring 1 with water temperature reaching 79.5–81.5 ◦C gushed out of the ground 0.5 m
higher than the entire system of streams was located. Its water flowed downhill, and was
mixed with water of the main stream at the distance of 8.5 m forming a peculiar thermocline
at the mixing zone. Very characteristic white biofilm with thick filamentous structure (StB1)
was collected 15–30 cm away from the point where hot water was coming to the surface.
Water of Spring 1 was slightly acidified (pH = 6.6) compared to other sampling points
where pH was about 7.5. Spring 2 was weaker, and its opening was located somewhere in a
shallow hot water pool 4 m away from the rill running from the spring 1. Biofilm StB2 grew
in the pool of Spring 2, where the water temperature was in range of 50.0–58.5 ◦C. This



Ecologies 2023, 4 109

biofilm had a layered structure of dark green, brown and orange brick color. Spring 2 gave
birth to a small stream that ran in parallel with the main stream and was also partly fed with
the waters from Spring 1. Two biofilms, StB4 and StB5, were collected along this stream.
Both biofilms had layered structure. Biofilm StB5 was formed close to the point where
the waters of both hot springs mixed, and water from Spring 1 heated its environment up
to 69.0–70.2 ◦C. It was almost transparent and resembled a rigid and dense jelly. Biofilm
StB4 was located 4 m downstream StB5, and water temperature there was 67.0–69.0 ◦C.
The biofilm StB4 structure and color was visually similar to that of StB2. We also sampled
two biofilms from the main stream, aiming to compare them with the biofilms from the
hot streams. One such biofilm (StB3) was abundantly growing at the thermocline zone at
the mouth of the hot spring, thus being disposed to two contrasting temperatures (46.0 ◦C
and 18.0 ◦C) simultaneously. It had filamentous structure, but the relatively thin brownish
filaments were not similar to the thick “hairy” structure of white biofilm StB1. Biofilm StB6
that developed several meters downstream in the main stream (17.0 ◦C) was amorphous,
brown-black, and covered with gas bubbles.

2.2. DNA Extraction, Purification, Amplification, and Sequencing

The samples of the biofilms were collected from sites in four replicates using sterile
scalpels, pooled into sterile tubes and immediately filled with DNA/RNA Shield reagent
(Zymo Research, Irvine, CA, USA). Fixed samples were transported to the laboratory, where
they were stored at −80 ◦C until DNA purification and further analysis.

Total genomic DNA was extracted from the microbial biofilm samples using the Power
Biofilm Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s instruc-
tions. Cells were disrupted using the PowerLyzer (MP Biomedicals, Irvine, CA, USA).
V3-V4 regions of the 16S rRNA genes were amplified by PCR using primers for bacte-
ria S-D-Bact-0341-b-S-17 (CCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21 (GAC-
TACHVGGGTATCTAATCC) [21]; for archaea Arch349F (5′-GYGCASCAGKCGMGAAW-3′)
and Arch806R (5′-GGACTACVSGGGTATCTAAT-3′) [22]. V4 region of the 18S SSU rRNA
gene was targeted using primers TAReuk454FWD1 (CCAGCASCYGCGGTAATTCC) and
TAReukREV3 (ACTTTCGTTCTTGATYRA) [23]. We used Q5 High-Fidelity 2X Master Mix
(New England Biolabs, UK). The PCR protocol suggested by the Illumina 16S Metagenomic
Sequencing Library Preparation protocol ((https://support.illumina.com/documents/
documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15
044223-b.pdf, accessed on 27 November 2013) was applied. After 25 cycles of PCR, its
results were checked by electrophoresis in 1% agarose gel stained with ethidium bromide.
Amplicon libraries were prepared following the Illumina 16S Metagenomic Sequencing
Library Preparation protocol. Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA) with a dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA) was used to measure DNA concentrations. The libraries were pooled by equal
molarity. Denaturation and sample loading were performed according to the Illumina
Sample Preparation Guide using a MiSeq Reagent Kit v3, 600 cycles (Illumina, San Diego,
CA, USA). The sequencing of the libraries was performed on the Illumina MiSeq platform
(Illumina, San Diego, CA, USA).

2.3. Data Analysis

The sequencing data quality was checked using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, accessed on 1 December 2022). Cutadapt [24] was used
for primer sequences removal from the reads. The DADA2 workflow [25] was used for
further sequence analysis, including quality filtering, reads merging, chimera removal,
and amplicon sequence variants (ASVs) generation. The ASVs-based approach was used,
as it is more precise, sensitive, reproducible, and comprehensive than the OTUs-based
approach [26]. The amplicon sequence variants (ASVs) obtained were taxonomically
classified using a pre-trained naive Bayes classifier, which was trained on SILVA 138
SSU database [27]. All statistical analyses and visualization were performed in the R

https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
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environment using phyloseq [28], ggplot2 [29], MicrobiotaProcess [30], microbiome [31]
packages. For community composition analysis and visualization of specific taxonomy
levels, we merged ASVs related to one genus with tax_glom function and took ASVs that
represent at least 1% of reads in at least one sample for bacteria and archaea, or 5% of reads
for protists. Alpha diversity was calculated using the alpha() function from microbiome
package in R. Bray–Curtis dissimilarity was used for beta diversity comparison in get_pcoa
function. Then, we computed the Pearson’s rank correlation coefficient to test if there was
any dependence between alpha diversity and temperature.

3. Results
3.1. Estimation of Richness and Diversity of the Biofilm-Forming Microbial Communities

For the bacterial community, after excluding occasional archaeal and chloroplast
sequences, the total number of reads amounted to 449,694 which were compiled into 1628
ASVs with an average sequence length of 417 bp. For archaea, we excluded StB3, StB5,
and StB6 samples as archaeal sequences there were underrepresented, in three remaining
samples (StB1, StB2, and StB4) the final number of archaeal reads was 17,342, which yielded
87 ASVs with an average sequence length of 339 bp. As we also aimed to assess the diversity
of protists in the microbial communities analyzed, we got rid of eukaryotic non-protist
ASVs. After quality control, 171,722 reads were classified into 562 ASVs with an average
sequence length of 382 bp (Supplementary Table S2). After ASVs assembly, we obtained
the rarefaction curves for all samples, and each of those reached a plateau, indicating good
representation of the microbial communities (Supplementary Figure S1).

We calculated two alpha diversity indexes, Chao1 and Shannon, for bacterial and ar-
chaeal components of the communities (Figure 2A,B). Chao1 is a richness index, evaluating
the total number of taxa in the sample; hence, it allows to estimate how many of the taxa
may be missing in the results of analysis. Shannon is a diversity index, the higher it is, the
more diverse the community is.

According to Chao1 index, bacterial communities of StB3 and StB6 biofilms were
characterized by the greatest richness among all studied samples (Figure 2A). At the same
time, StB2, StB4, and StB5 were the most diverse biofilms ((Figure 2A).

We found that for bacteria there was a strong inverse correlation between diversity
indexes and temperature (R = −0.81 for Shannon and R= −0.6 for Chao1, Figure 2C). Our
results based on linear regression (explanatory power: R2 = 0.6624, p value = 0.0001248 for
Shannon diversity and R2 = 0.3637, p value = 0.0134 for Chao1) indicated that the richness
and diversity of bacteria in the geothermal microbial communities decreased with the
increase of temperature. The archaeal component of the communities demonstrated reverse
dependence (Figure 2D). The richest and the most diverse archaeal component (Figure 2B)
was observed in StB1 biofilm growing at the highest temperature. The correlation between
diversity indexes and temperature was R = 0.96 for Shannon and R = 0.93 for Chao1.
Explanatory power of linear regression model was R2 = 0.92, p value = 8.8 × 10−7 for
Shannon diversity and R2 = 0.86, p value = 1.5 × 10−5 for Chao1.

A beta diversity analysis was performed to compare the bacterial community structure
in different biofilms. It revealed that six studied samples clustered into three distinct
groups (Figure 3) according to the habitat: one group was formed by biofilms StB3 and
StB6 growing in the main stream with the lower water temperature (17–20 ◦C), the second
included communities StB2, StB4, and StB5 that developed in moderately hot (50–70 ◦C)
environments, and biofilm StB1 picked directly from the hot spring (79–81 ◦C) stood alone
on the plot.
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bacteria (C) and archaea (D). Each biofilm is marked by a certain color identical for all plots.

3.2. The Taxonomic Diversity of Bacteria and Archaea in the Biofilm-Forming Communities

Within the domain bacteria, more than 96.5% of the assigned sequences were classified
at the phylum level. In total, 25, 26, 25, 34, 23, and 29 bacterial phyla were detected in StB1,
StB2, StB3, StB4, StB5, and StB6 samples, respectively.

The most abundant bacterial phylum in biofilm StB1 (Figure 4) from the hot spring
was Aquificota (61% of ASVs) followed by Hydrothermae (19%), Deinococcota (7%), Chlo-
roflexi (5.5%), and Dictyoglomota (3%). At the genus level, Sulfurihydrogenibium was the
absolute dominant (60% of the total number of ASVs), almost exclusively representing
the phylum Aquificota. All ASVs attributed to Hydrothermae phylum could not be classi-
fied to the genus level. ASVs affiliated with Chloroflexi phylum mostly belonged to the
genus Thermoflexus. We also recovered Thermus sequences from Deinococcota phylum and
Dictyoglomus ASVs from Dictyoglomota.
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The second group of ‘moderate temperature samples’ included biofilms StB2, StB4,
and StB5. They had relatively similar taxonomic composition (Figures 3 and 4). Bacteria
belonging to phylum Chloroflexi were the most abundant, and they ranged from 46 to 50%
of the community in these biofilms. Among representatives of this phylum Chloroflexus
(35% and 43% of total number of ASVs, respectively in StB4 and StB5), RBG-13-54-9, which
was classified only down to order level (4% in both biofilms) and Roseiflexus (2% and 1%)
were the dominants in biofilms StB4 and StB5, while in biofilm StB2, Roseiflexus (23%) was
the major dominant, and the Chloroflexus share was 15%, RBG-13-54-9 was 8%. Among
other bacteria, we revealed the dominance of Bacteroidota and Armatimonadota, followed
by Cyanobacteria, Deinococcota, and Proteobacteria (Figure 4). Majority of the members
of Armatimonadota phylum were not classified to the genus level, and Bacteroidota was
classified to Thermonema only in biofilm StB5. An unusual finding was a significant number
of cyanobacterial taxa related to Thermosynechococcus BP-1, this taxon had the highest
representation in biofilm StB4 (11%). Some sequences were well-represented only in biofilm
StB5 among the moderate temperature group, such as Thermus (9% of total number of
ASVs) and obligately anaerobic genus Fervidobacterium (9%) [32].
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Biofilms StB3 and StB6 sampled from the main stream with water of ambient tempera-
ture appeared relatively similar in terms of bacterial diversity (Figures 3 and 4). The filamen-
tous bacteria from Thiothrix genus (Gammaproteobacteria) were the major dominant in StB3
biofilm, as 73% of all ASVs found there belonged to it. The representatives of Cyanobacteria,
Chloroflexi and several other phyla were detected at a fairly low relative abundance. The
situation was opposite in biofilm StB6, where the filamentous Tychonema_CCAP_1459_11B
was the most prevalent cyanobacteria (60%) [33], while abundance of Thiothrix was just 9%.

Regarding archaea (Figure 5), in biofilm StB1 the dominant phylum was Crenarchaeota
(57%) consisting of Candidatus Caldiarchaeum (37.5% from the whole community reads),
Candidatus Nitrosocaldus (9%), and thermoacidophilic genus Acidianus (2%) [34]. Less
abundant ASVs belonging to Nanoarchaeota phylum (22%) represented insufficiently
explored order Woesearchaeales. Furthermore, significant fractions were also formed by
Halobacterota (10%), Korarchaeota (5%), and Aenigmarchaeota (3%).
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The taxonomic composition of archaea in biofilms StB2 and StB4 differed from that of
biofilm StB1 but also from each other. The dominant phyla were Nanoarchaeota (83% and
32% for StB2 and StB4, respectively) with prevailing genus AR15, and Aenigmarchaeota
(15% and 51%, respectively). In biofilm StB4, phylum Crenarchaeota was also well rep-
resented (16.5%) compared to biofilm StB2, and 11% of the StB4 community consisted of
archaea belonging to Candidatus Caldiarchaeum.

3.3. Taxonomic Diversity of Protists in the Biofilm-Forming Microbial Communities

Protists were also represented in the studied microbial communities (Figure 6). Many
eukaryotic sequences (9–59% in different samples) did not belong to the known protists
and possibly resulted from the hot spring contamination with plant and animal remnants,
so we did not analyze them further on. In all biofilms, Ciliophora sequences were the
most numerous among those ASVs which could be attributed to protists. Mainly anaerobic
ciliates from the genus Trimyema [35] were present, followed by Oxytricha and some scu-
ticociliates related to Cinetochilum. The representatives of the macrotaxon Cercozoa were
characteristic for all biofilms, but only in biofilms StB3 and StB6 could they be considered
dominant, reaching 24.5% and 34%, respectively. Furthermore, subphylum Sagenista was
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well presented in these two biofilms too, with a small number of reads also in biofilm StB4.
Amoebae of Conosa subphylum were characteristic only for biofilm StB6, where they were
one of the dominant taxa (24%). ASVs of lobose amoebae were present in minor quantities
in all six studied biofilms.
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4. Discussion
4.1. Prokaryotic Community Changes Correlate with the Temperature Gradient

Metagenomic studies of the microbial communities in the extreme biotopes are nu-
merous and address not only the taxonomic diversity of such communities but also the
influence of the environmental factors on the community composition. Microbial commu-
nities of the hot springs in different parts of the world have been studied, and in several
works the correlation between temperature and diversity was found and proved [36–38].
It has also been reported that pH of water may have a strong effect upon the aquatic
microbial communities’ structure [39]. However, the relation between the composition
of microbial communities and environmental factors shaping them is very complex, and
many factors should be taken into account even when similar biotopes from different
localities are compared [12,40]. The studied biofilms StB1, StB2, StB4, and StB5 developed
in the same geothermal aquatic system that was formed by the Stolbovskie hot springs fed
with underground waters of the Mendeleev volcano top area [20]. We assumed that the
chemical composition of water at the sampling sites could be considered almost identical,
as two water sources were closely neighboring, and all sampling sites were just several
meters apart from each other. However, the water temperature varied significantly along
the hot streams even at short distances (Figure 1). It has been shown that differences
in alpha diversity of the microbial samples taken from the hot springs were higher if
sampling points were located close to each other but differed in water temperature than
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if the distance was larger but the temperature was the same [41]. We found that water
temperature inversely correlated with the number of bacterial taxa detected as ASVs in
the studied biofilms, and with their phylogenetic assemblies (Figure 2), thus, they were
obviously influencing and shaping the microbial communities. A similar trend can also
be observed in other studies [39,41]. Biofilm StB1 developed at 79 ◦C, i.e., at the lowest
temperature limit of hyperthermophilic growth, and, respectively, was characterized by
unique taxonomic composition, where the representatives of the phyla Aquificae and
Hydrothermae dominated. Almost all ASVs of Aquificae in biofilm StB1 belonged to
bacteria of the genus Sulfurihydrogenibium, which constituted about 60% of total bacterial
abundance there (Figure 4). This genus includes anaerobic or microaerobic, facultatively
heterotrophic or chemolithoautotrophic hydrogen-, or sulfur-, or thiosulphate-oxidizing
bacteria which preferentially live at a neutral pH in high-temperature conditions [39,42].
Sulfurihydrogenibium representatives are able to consume oxygen from the environment
even in minor concentrations, thus creating and maintaining anaerobic conditions for other
community participants [43]. Sulfurihydrogenibium is a dominant genus in many biofilms
growing in geothermal aquatic biotopes in Yellowstone caldera [44], Kamchatka peninsula
hot springs [45], Japan [46], New Zealand [47], and Azores [48], though its species are
different. The appearance and structure of ‘hairy’ biofilm StB1 from the Stolbovskie hot
springs strongly resembles the ‘fettucini-like’ biofilms from Mammoth Hot Springs in
Yellowstone National Park [49], though besides Sulfurihydrogenibium dominance, these
biofilms are not identical by taxonomic composition.

Biofilms StB2, StB4, and StB5growing at the temperature interval 50–70 ◦C, almost
in the range considered optimal for moderate (55–60 ◦C) and extreme (70–75 ◦C) ther-
mophiles, were relatively similar to each other by taxonomic composition (and also by
layered morphology and general appearance) and clustered together at PCoA (Figure 3).
At this temperature, the hyperthermophiles from biofilm StB1 were substituted by pho-
tosynthetic representatives of Chloroflexi and Cyanobacteria, which dominated in ther-
mophilic biofilms StB2, StB4, and StB5 (Figure 4). Thus, we observe a transition from the
chemotrophic community in the hyperthermophilic zone to the photosynthetic community
along the temperature gradient, which has also been shown by other authors [41,50–54].
Detected phototrophic genera such as Chloroflexus, Roseiflexus, and Thermosynechococcus are
common for phototrophic biofilms at the temperature interval 50–70 ◦C [41,51,52,55,56].
Biofilms StB2 and StB4 were similar in appearance to the multilayer biofilms known from
the other hot springs, including those in Yellowstone National Park [57–59]. Such biofilms
usually consist of a green surface layer of Synechococcus cyanobacteria and a red lower layer
dominated by Chloroflexi [52,60,61]. The layering of such mats is explained by different
photosynthetic capabilities of Cyanobacteria and Chloroflexi at high oxygen levels, as well
as by different resistance to sulfides. The richness of phototrophic cyanobacteria decreases
with increasing temperature, leading to decrease in the oxygenic photosynthesis abilities,
whereas the richness of Chloroflexi and the rate of anoxygenic photosynthesis are not
influenced by increasing temperature [62]. However, we did not detect bacteria of the
genus Synechococcus in the Kunashir biofilms. While in biofilm StB5 there was no green
layer at all, we suppose that thin surface green layer of biofilms StB2 and StB4 was formed
by Thermosynechococcus BP-1 (Figure 4). The T. elongatus strain BP-1 was originally isolated
as a thermophilic cyanobacterium from the hot spring in Beppu, a town in the southern
part of Japan [63]. It was initially identified as Synechococcus elongatus strain BP-14, which
was later described as a new genus Thermosynechococcus [64]. Interestingly, according to
the 16S rRNA gene sequence phylogenetic analysis, T. elongatus branches very close to
the origin of cyanobacteria, while seven major lineages arose rather recently as “crown”
groups [13,65].

The genus Chloroflexus dominated in biofilms StB4 and StB5 at temperatures close to
70 ◦C degrees, but when temperatures dropped to 60 ◦C and below, the genus Roseiflexus
became dominant in the community. Similar results were previously obtained for Mush-
room Spring (Yellowstone National Park, USA), where Chloroflexus was more abundant
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at 65 ◦C while Roseiflexus was more abundant already at 60 ◦C [66]. However, in the
other Yellowstone hot spring study, it was shown that Roseiflexus was more abundant at
higher temperatures [59]. Apparently, temperature plays a role in the occurrence of specific
phototrophic Chloroflexi. However, in addition to temperature, morphology, geochemistry,
and metabolic abilities are also not less important factors [62]. To conclude, biofilms StB2,
StB4, and StB5 were taxonomically different from the morphologically similar mats found
under similar conditions in the Yellowstone National Park hot springs [57–59].

Biofilms StB3 and StB6 grew in the main stream with an ambient water temperature,
even if biofilm StB3 was also influenced by a hot water current. Anoxygenic phototrophs al-
most disappeared (Figure 4). Mixotrophic bacteria (chemoorganotrophic and chemolithoau-
totrophic that use inorganic sulfur) of genus Thiotrix (Gammaproteobacteria) dominated in
biofilm StB3. Thiotrix spp. have been described as a major component of biofilms growing
on various surfaces in flowing water that contained sulfides [67]. The biofilms edified by
these bacteria were white and had a thin-thread structure, which is consistent with our
observations. Biofilm StB6 was obviously a photosynthetic community where filamentous
cyanobacteria Tychonema_CCAP_1459_11 likely played a major role. Tychonema belongs to
the benthic cyanobacteria and can produce potent neurotoxins. Pieces of benthic biofilms
can float to the surface, thus there is a certain risk of poisoning [68], which should be
considered when the tourists take baths in Zmeiny downstream the Stolbovskie hot springs.
Similar tendency for succession of anoxygenic phototrophs by oxygenic phototrophs, first
of all trichome cyanobacteria, with temperature decrease is observed also in the communi-
ties of the other hot springs [61,69]. A large number of chloroplasts ASVs may also indicate
algae as primary producers in biofilm StB3, though algae usually dominate in the biofilms
of acidified habitats with pH < 5 [19,70].

For archaeal taxa the water temperature had a positive effect on richness and tax-
onomic diversity (Figure 2). The opposite effect of temperature on the occurrence and
diversity for archaea and bacteria may be explained by generally better adaptation of
archaea to the extreme environments [71]. Archaea are the main group of living organisms
that thrive in biotopes with extreme conditions, and, in particular, hyperthermophilic
species are present almost in all lineages of archaea [72]. Some archaea are able to sur-
vive at temperatures exceeding 100 ◦C, and many can tolerate 70–80 ◦C, thus there is
no surprise that archaeal abundance, richness, and diversity in the hot springs is higher
than bacterial [44]. Previously, it has been shown that the highest taxonomic diversity of
Crenarchaeota was observed in temperature range 59–77 ◦C [73,74]. At lower or higher
temperatures, prevalence and abundance of different crenarchaea in the hot springs de-
creased [74]. Thus, Crenarchaeota and Korarchaeota include predominantly thermophilic
organisms, and representatives of these phyla appeared to be the most diverse in biofilm
StB1 growing at 79 ◦C, though being less present in biofilms StB2 and StB4 (Figure 5).
Candidatus Caldiarchaeum subterraneum was the best represented in biofilm StB1. Candida-
tus C. subterraneous is an uncultivated archaeal lineage that was first described from the
metagenomic assembly of microbial mat from a geothermal water stream in a subsurface
gold mine [75]. Candidatus C. subterraneum was also found in the other hot springs that
were characterized by similar temperature and pH [52,76,77]. Analysis of the metabolic
potential suggested a predominantly aerobic nature of Candidatus C. subterraneum, that
was a member of subsurface thermophilic microbial mats with a heterotrophic lifestyle [78].
Although in SILVA database (SILVA 138 release) this archaeon is indicated (and referred
to in our work) as a member of the phylum Crenarchaeota, it should be noted that in the
recent publication this lineage has been reassigned to the order Candidatus Caldarchaeales
within the phylum Thermoproteota, class Nitrososphaeria [79]. The other characteristic
representative of hyperthermophiles in biofilm StB1 growing at 79 ◦C was Archaeoglobus.
Members of the class Archaeoglobi (phylum Halobacterota) are known as members of
subsurface microbial communities, and are capable of growing by reducing sulfite and
thiosulfate [14,80,81].
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4.2. The Evidence of Presence of Ciliates in the Hot Springs

There is much less data on eukaryotic occurrence and diversity than on bacteria and
archaea in hot springs. It is believed that most of thermophilic protists and fungi can
survive at temperatures up to 60 ◦C [82], while at higher temperatures, eukaryotic cells
require too much of oxygen which may be depleted, and also eukaryotic cell membranes
have different lipid composition not favorable to withstand heat [16]. The comprehensive
report on diversity of protists in the hydrothermal systems of Lassen Volcanic National
Park (Northern California) suggested that some protists might survive at temperatures up
to 68–72 ◦C [83]. Presence of diatoms (Bacillariophyceae), some chrysophytes and chlamy-
domonadales algae, fungi (Basidiomycota and Chytridiomycota), amoebae, cercozoans,
and ciliates was molecularly confirmed in those extreme conditions. We found an unexpect-
edly high number of ASVs belonging to different protist lineages in the biofilms sampled
from the Stolbovskie hot springs, which was inconsistent with the observation that species
richness of thermophilic protists is usually very low in such habitats [15]. Metabarcoding
of the 18S rRNA genes revealed significant diversity of protists, first of all cercozoans,
amoebae of two subphyla (one of those includes Echinamoeba thermarum, the thermophilic
lobose amoeba found in hot springs all over the world [84]), and heterokonts from subphy-
lum Sagenista. At the same time, protists were not abundant. The dominant group in the
studied biofilms were ciliates (Ciliophora), which ASVs constituted on average 57% of all
protistan ASVs. Similar results were obtained at screening for protists in the New Zealand
hot springs [12], though the authors suspected a certain bias in their data. The highest
temperatures at which living ciliates have been ever isolated from the thermal springs
was 68 ◦C (see references in [85]). However, in more recent reports the surviving cysts
of ciliates, namely Dexiotricha colpidiopsis (Oligohymenophorea) and Oxytricha granulifera
(Spirotrichea) were collected in a hot spring in Iceland at temperatures up to 75 ◦C [86,87].
No ciliates were detected at temperatures above 80 ◦C [15]. Interestingly, some thermophilic
ciliates can be maintained preferentially at much lower temperature, as was shown for a
‘eurythermic’ hymenostomatid Cyclidium citrullus (Oligohymenophorea) isolated from a
hot spring in Israel but able to grow in the laboratory at temperature 10 ◦C lower than in
the habitat [85]. Representatives of another ciliate genus Trimyema (Plagiopylea) frequent in
the hot springs were found at temperatures up to 65 ◦C [12,35]. In our samples the number
of ASVs witnessed that Trimyema was the dominant genus, though the temperatures of
biofilm StB5 and especially biofilm StB1 growth were higher than permissive for ciliates
temperatures reported in the literature. Interestingly, Trimyema minutum isolated from
the hydrothermal vent sediments with temperatures up to 70 ◦C was further maintained
at the temperature interval 28–52 ◦C being unable to survive already at 55 ◦C [35]. The
authors supposed that this discrepancy was due to temperature micro-inhomogeneities in
the habitat allowing ciliates to escape from too harsh conditions. This hypothesis can also
explain our finding of Trimyema sp. in the biofilms, at least multilayered ones, which may
offer certain compartmentalization. In addition to temperature, an important factor for all
microorganisms is the presence or absence of oxygen. Indeed, Trimyema is known as an
anaerobic ciliate, and appropriate anoxic conditions could be achieved in the hot spring due
to the scavenging of dissolved oxygen by Sulfurihydrogenibium [88], the major genus of the
biofilms growing in the hottest sampling sites. Two other ciliates documented by us among
the dominants, Oxytricha (Spirotrichea) and some scuticociliate (Oligohymenophorea) re-
lated to a marine ciliate Cinetochilum, still were significantly less present. Oxytricha is
known to be able to survive in adverse conditions such as acidic environments [28,57], and
its resting cysts were also found in the hot spring in Iceland [87] and dominated among
ciliates in majority of the hot springs in New Zealand [12], and it seems likely that its
sequence was detected as anonymous Spirotrichea sp. at 68 ◦C in thermal springs of Lassen
Volcanic National Park [83]. Many scuticociliates are presumably anaerobic and contain
methanogenic archaea as symbionts [89], and at least one of them, Cyclidium, has been
shown to be thermophilic [85]. We did not detect any representative of ciliates belonging
to class Colpodea, such as Cyrtolophosididae which were among the dominants in some
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hot springs in New Zealand [12] and are also able to encyst. However, in general our data
support the hypothesis that several protist lineages include the majority of thermophilic
taxa, thus revealing certain adaptations to the temperature extremities [12].

The direct proof of presence of protists in the hot spring biofilms could be obtained
by thorough microscopy of the sample, but such facility was absent at the collection site,
and no eukaryotes could survive transportation to the equipped laboratory. At least some
protists revealed by metabarcoding, such as Oxytricha, are able to form surviving cysts, but,
again, tiny cysts are very difficult to find in a sample.

Thus, the biofilms found at the Stolbovskie hot springs on Kunashir Island represent
complex microbial communities formed by bacteria, archaea, and protists. All participants
of these communities are likely characterized by certain interconnections, as it was shown
that protistan community composition was moderately correlated with bacterial and ar-
chaeal assemblies in the hot springs in New Zealand [12]. The biofilms of six kinds that
we found in a local area along the hot streams of the geothermal system were different
from each other by taxonomic composition, and the level of their similarity or diversity
was significantly influenced by water temperature.
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